3 resultados para Prussian Blue particles
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence
Resumo:
The generation of effluent from the finishing process in textile industry is a serious environmental problem and turned into an object of study in several scientific papers. Contamination with dyes and the presences of substances that are toxic to the environment characterize this difficult treatment effluent. Several processes have already been evaluated to remove and even degrade such pollutants are examples: coagulation-flocculation, biological treatment and advanced oxidative processes, but not yet sufficient to enable the recovery of dye or at least of the recovery agent. An alternative to this problem is the cloud point extraction that involves the application of nonionic surfactants at temperatures above the cloud point, making the water a weak solvent to the surfactant, providing the agglomeration of those molecules around the dyes molecules by affinity with the organic phase. After that, the formation of two phases occurred: the diluted one, poor in dye and surfactant, and the other one, coacervate, with higher concentrations of dye and surfactants than the other one. The later use of the coacervate as a dye and surfactant recycle shows the technical and economic viability of this process. In this paper, the cloud point extraction is used to remove the dye Reactive Blue from the water, using nonionic surfactant nonyl phenol with 9,5 etoxilations. The aim is to solubilize the dye molecules in surfactant, varying the concentration and temperature to study its effects. Evaluating the dye concentration in dilute phase after extraction, it is possible to analyze thermodynamic variables, build Langmuir isotherms, determine the behavior of the coacervate volume for a surfactant concentration and temperature, the distribution coefficient and the dye removal efficiency. The concentration of surfactant proved itself to be crucial to the success of the treatment. The results of removal efficiency reached values of 91,38%, 90,69%, 89,58%, 87,22% and 84,18% to temperatures of 65,0, 67,5, 70,0, 72,5 and 75,0°C, respectively, showing that the cloud point extraction is an efficient alternative for the treatment of wastewater containing Reactive Blue
Resumo:
The use of habitat is an important part of a species biology. One resource of great importance for the survivor and reproduction of an individual is the food resource. Thus, the social interactions an animal has during the feeding activities are of extremely importance within its behavioral aspects, which represents the part of an organism trough which it interacts with the environment, adapting to changes and variations. Herons are known to form feeding aggregations of even more than thousands of individuals, in which social components of foraging have been identified and studied for several species. More profound studies of these aspects are yet to poor for the Little Blue Heron, Egretta caerulea. Therefore, the aim of this study was to describe the social behavior (display postures, vocalizations and co-specific interactions) and the territoriality of the specie during the feeding period in an area of mud bank in the estuarine system of Cananéia, south coast of São Paulo state, Brazil. The defense of a fixed and exclusive area, closest to the mangrove, trough expulsion was observed; some thing that have not yet been registered with concrete data for the specie. Higher capture and success rates, and lower investment rates (steps/min and stabs/min) were registered for individuals foraging in areas corresponding to the defended territory. This could be one of possible reasons for the establishment of territories in the area. Four display postures were registered for the specie, two of then new in the literature, which are used in the interactions between individuals; one vocalization, that apparently is important in the social context of foraging for the specie and, possibly, has a function of advertising and proclaiming the dominance position of the territorial individual within the group. A territorial individual uses three behaviors, of the ones described: expulsion, vocalization and encounter (agonistic encounter between individuals, without physical aggression). Of these, the expulsion is apparently used in the actual defense, actively; while the other two behaviors are used in a more passive way, in the maintenance of the dominance position of the individual, helping it in the defense of its territory in a less direct manner. Therefore, with the results presented in here, new components of the social utilization of the feeding resource for the Little Blue Heron were identified, incorporating aspects of the territorial behavior for a future understanding of its possible adaptive significance. And it also reinforces the importance of the social interactions of herons foraging in great aggregations, in areas ecologically important