43 resultados para Processamento de grãos

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Na unfolding method of linear intercept distributions and secction área distribution was implemented for structures with spherical grains. Although the unfolding routine depends on the grain shape, structures with spheroidal grains can also be treated by this routine. Grains of non-spheroidal shape can be treated only as approximation. A software was developed with two parts. The first part calculates the probability matrix. The second part uses this matrix and minimizes the chi-square. The results are presented with any number of size classes as required. The probability matrix was determined by means of the linear intercept and section area distributions created by computer simulation. Using curve fittings the probability matrix for spheres of any sizes could be determined. Two kinds of tests were carried out to prove the efficiency of the Technique. The theoretical tests represent ideal cases. The software was able to exactly find the proposed grain size distribution. In the second test, a structure was simulated in computer and images of its slices were used to produce the corresponding linear intercept the section area distributions. These distributions were then unfolded. This test simulates better reality. The results show deviations from the real size distribution. This deviations are caused by statistic fluctuation. The unfolding of the linear intercept distribution works perfectly, but the unfolding of section area distribution does not work due to a failure in the chi-square minimization. The minimization method uses a matrix inversion routine. The matrix generated by this procedure cannot be inverted. Other minimization method must be used

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to develop a methodology for analysis of images using overlapping, which assists in identification of microstructural features in areas of titanium, which may be associated with its biological response. That way, surfaces of titanium heat treated for 08 (eight) different ways have been subjected to a test culture of cells. It was a relationship between the grain, texture and shape of grains of surface of titanium (attacked) trying to relate to the process of proliferation and adhesion. We used an open source software for cell counting adhered to the surface of titanium. The juxtaposition of images before and after cell culture was obtained with the aid of micro-hardness of impressions made on the surface of samples. From this image where there is overlap, it is possible to study a possible relationship between cell growth with microstructural characteristics of the surface of titanium. This methodology was efficient to describe a set of procedures that are useful in the analysis of surfaces of titanium subjected to a culture of cells

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies two methods for drying sunflower grains grown in the western region of Rio Grande do Norte, in the premises of the Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte - IFRN - Campus Apodi. This initiative was made because of the harvested grain during the harvest, being stored in sheds without any control of temperature, humidity etc. Therewith, many physical, chemical and physiological characteristics are compromised and grains lose much quality for oil production as their germination power. Taking into account that most of the stored grain is used for replanting, the studied methods include drying of grains in a thin layer using an oven with air circulation (fixed bed) and drying in a spouted bed. It was studied the drying of grains in natura, i.e., newly harvested. The fixed bed drying was carried out at temperatures of 40, 50, 60 and 70°C. Experiments in spouted bed were performed based on an experimental design, 2² + 3, with three replications at the central point, where the independent variables were grains load (1500, 2000 and 2500 g) and the temperature of the inlet air (70, 80, and 90 °C), obtaining the drying and desorption equilibrium isotherms. Previously, the characteristic curves of the bed were obtained. Both in the fixed bed as in the spouted bed, drying and desorption curves were obtained by weighing the grains throughout the experiments and measurements of water activity, respectively. The grains drying in the spouted bed showed good results with significant reduction of processing time. The models of FICK and PAGE were fitted to the experimental data, models which will represent the drying of grains both in the fixed bed as in the spouted bed. The desorption curves showed no influence of the processing temperature in the hygroscopic characteristics of the grains. The models of GAB, OSWIN and LUIKOV could well represent the desorption isotherms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Na unfolding method of linear intercept distributions and secction área distribution was implemented for structures with spherical grains. Although the unfolding routine depends on the grain shape, structures with spheroidal grains can also be treated by this routine. Grains of non-spheroidal shape can be treated only as approximation. A software was developed with two parts. The first part calculates the probability matrix. The second part uses this matrix and minimizes the chi-square. The results are presented with any number of size classes as required. The probability matrix was determined by means of the linear intercept and section area distributions created by computer simulation. Using curve fittings the probability matrix for spheres of any sizes could be determined. Two kinds of tests were carried out to prove the efficiency of the Technique. The theoretical tests represent ideal cases. The software was able to exactly find the proposed grain size distribution. In the second test, a structure was simulated in computer and images of its slices were used to produce the corresponding linear intercept the section area distributions. These distributions were then unfolded. This test simulates better reality. The results show deviations from the real size distribution. This deviations are caused by statistic fluctuation. The unfolding of the linear intercept distribution works perfectly, but the unfolding of section area distribution does not work due to a failure in the chi-square minimization. The minimization method uses a matrix inversion routine. The matrix generated by this procedure cannot be inverted. Other minimization method must be used

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to develop a methodology for analysis of images using overlapping, which assists in identification of microstructural features in areas of titanium, which may be associated with its biological response. That way, surfaces of titanium heat treated for 08 (eight) different ways have been subjected to a test culture of cells. It was a relationship between the grain, texture and shape of grains of surface of titanium (attacked) trying to relate to the process of proliferation and adhesion. We used an open source software for cell counting adhered to the surface of titanium. The juxtaposition of images before and after cell culture was obtained with the aid of micro-hardness of impressions made on the surface of samples. From this image where there is overlap, it is possible to study a possible relationship between cell growth with microstructural characteristics of the surface of titanium. This methodology was efficient to describe a set of procedures that are useful in the analysis of surfaces of titanium subjected to a culture of cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work shows a contribution to the studies of development and solid sinterization of a metallic matrix composite MMC that has as starter materials 316L stainless steel atomized with water, and two different Tantalum Carbide TaC powders, with averages crystallite sizes of 13.78 nm and 40.66 nm. Aiming the metallic matrix s density and hardness increase was added different nanometric sizes of TaC by dispersion. The 316L stainless steel is an alloy largely used because it s high resistance to corrosion property. Although, its application is limited by the low wear resistance, consequence of its low hardness. Besides this, it shows low sinterability and it cannot be hardened by thermal treatments traditional methods because of the austenitic structure, face centered cubic, stabilized mainly in nickel presence. Steel samples added with TaC 3% wt (each sample with different type of carbide), following a mechanical milling route using conventional mill for 24 hours. Each one of the resulted samples, as well as the pure steel sample, were compacted at 700 MPa, room temperature, without any addictive, uniaxial tension, using a 5 mm diameter cylindrical mold, and quantity calculated to obtain compacted final average height of 5 mm. Subsequently, were sintered in vacuum atmosphere, temperature of 1290ºC, heating rate of 20ºC/min, using different soaking times of 30 and 60 min and cooled at room temperature. The sintered samples were submitted to density and micro-hardness analysis. The TaC reforced samples showed higher density values and an expressive hardness increase. The complementary analysis in optical microscope, scanning electronic microscope and X ray diffractometer, showed that the TaC, processed form, contributed with the hardness increase, by densification, itself hardness and grains growth control at the metallic matrix, segregating itself to the grain boarders

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discs were grade II cp Ti oxynitride by plasma of Ar - N2 - O2 using different proportions of individual gases. These ratios were established from analysis of optical emission spectroscopy (OES) of plasma species. The proportions that resulted in species whose spectra showed an abrupt change of light intensity were chosen for this study. Nanohardness tests revealed that there was a correlation between the intensity of N2 + species with the hardness, because the treatments where they had a higher intensity, obtained a higher value nanohardness, although the crystalline phases have remained unchanged. With respect to topography, it was observed that in general, the surface roughness is related to the intensities of plasma species, because they may have different values depending on the behavior of the species. Images obtained by optical microscopy revealed a surface with grains of different colors to optical reflectance showed a peak of reflection in the red area. Measures the contact angle and surface tension showed hydrophilic properties and hydrophilic with little variation of polar and dispersive components of surface tension

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research presents an overview of the addition steelwork dust of ceramic shingles in order to contribute to the utilization use of such residue. The ceramic industry perspective in the Brazilian State of Piauí is quite promising. Unlike other productive sectors, the ceramic industry uses basically natural raw materials. Its final products are, in short, the result of transforming clay compounds. These raw materials are composed primarily of aluminum oxide, silicon, iron, sodium, magnesium, end calcium, among others. It was verified that steelwork dust is composed primarily of these same oxides, so that its incorporation in to structural ceramics is a very reasonable idea. Both clay and steelwork powder were characterized by AG, XRF, XRD, TGA and DTA. In addition, steelwork dust samples containing (0%, 5%, 10%, 15%, 20% and 25%) were extruded and burned at 800°C, 850°C, 900°C and 950°C. Then t echnological tests of linear shrinkage, water uptake, apparent porosity, apparent density and flexural strengthwere carried at. The results showed the possibility of using steelwork powder in ceramic shingles until 15% significant improvement in physical and mechanical properties. This behavior shows the possibility of burning at temperatures lower than 850ºC, thus promoting a product final cost reduction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allowing to simulate a porous structure, for example, reservoir rocks and structures with high density. The initial procedure for developing the simulation is the construction of porous cubic structure consisting of spheres with a single size and with varying sizes. In addition, structures can also be simulated with various volume fractions. The results presented are divided into two parts: first, the ball shall be deemed as solid grains, ie the matrix phase represents the porosity, the second, the spheres are considered as pores. In this case the matrix phase represents the solid phase. The simulations in both cases are the same, but the simulated structures are intrinsically different. To validate the results presented by the program, simulations were performed by varying the amount of grain, the grain size distribution and void fraction in the structure. All results showed statistically reliable and consistent with those presented in the literature. The mean values and distributions of stereological parameters measured, such as intercept linear section of perimeter area, sectional area and mean free path are in agreement with the results obtained in the literature for the structures simulated. The results may help the understanding of real structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently the search for new materials with properties suitable for specific applications has increased the number of researches that aim to address market needs. The poly (methyl methacrylate) (PMMA) is one of the most important polymers of the family of polyacrylates and polymethacrylates, especially for its unique optical properties and weathering resistance, and exceptional hardness and gloss. The development of polymer composites by the addition of inorganic fillers to the PMMA matrix increases the potential use of this polymer in various fields of application. The most commonly used inorganic fillers are particles of silica (SiO2), modified clays, graphite and carbon nanotubes. The main objective of this work is the development of PMMA/SiO2 composites at different concentrations of SiO2, for new applications as engineering plastics. The composites were produced by extrusion of tubular film, and obtained via solution for application to commercial PMMA plates, and also by injection molding, for improved the abrasion and scratch resistance of PMMA without compromising transparency. The effects of the addition of silica particles in the polymer matrix properties were evaluated by the maximum tensile strength, hardness, abrasion and scratch resistance, in addition to preliminary characterization by torque rheometry and melt flow rate. The results indicated that it is possible to use silica particles in a PMMA matrix, and a higher silica concentration produced an increase of the abrasion and scratch resistance, hardness, and reduced tensile strength

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the creation and applications of a dynamic simulation software in order to study the hard metal structure (WC-Co). The technological ground used to increase the GPU hardware capacity was Geforce 9600 GT along with the PhysX chip created to make games more realistic. The software simulates the three-dimensional carbide structure to the shape of a cubic box where tungsten carbide (WC) are modeled as triangular prisms and truncated triangular prisms. The program was proven effective regarding checking testes, ranging from calculations of parameter measures such as the capacity to increase the number of particles simulated dynamically. It was possible to make an investigation of both the mean parameters and distributions stereological parameters used to characterize the carbide structure through cutting plans. Grounded on the cutting plans concerning the analyzed structures, we have investigated the linear intercepts, the intercepts to the area, and the perimeter section of the intercepted grains as well as the binder phase to the structure by calculating the mean value and distribution of the free path. As literature shows almost consensually that the distribution of the linear intercepts is lognormal, this suggests that the grain distribution is also lognormal. Thus, a routine was developed regarding the program which made possible a more detailed research on this issue. We have observed that it is possible, under certain values for the parameters which define the shape and size of the Prismatic grain to find out the distribution to the linear intercepts that approach the lognormal shape. Regarding a number of developed simulations, we have observed that the distribution curves of the linear and area intercepts as well as the perimeter section are consistent with studies on static computer simulation to these parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases