6 resultados para Problema das p-medianas heterogêneo
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments
Resumo:
The decrease in crime is one of the core issues that cause concern in society today. This study aims to propose improvements to public safety from the choice of points to the location of police units, ie the points which support the car and the police. For this, three models were developed in order to assist decision making regarding the best placement of these bases. The Model of Police Units Routing has the intention to analyze the current configuration of a given region and develop optimal routes for round preventative. The Model of Allocation and Routing for New Police Units (MARNUP) used the model of facility location called p-median weighted and traveling salesman problem (TSP) combined aiming an ideal setting for regions that do not yet have support points or to assess how far the distribution is present in relation to that found in solution. The Model Redefinition and Routing Unit Police (MRRUP) seek to change the current positioning taking into account the budgetary constraints of the decision maker. To verify the applicability of these models we used data from 602 points to instances of police command that is responsible for the capital city of Natal. The city currently has 31 police units for 36 of these 19 districts and police have some assistance. This reality can lead to higher costs and higher response times for answering emergency calls. The results of the models showed that in an ideal situation it is possible to define a distance of 500 km/round, whereas in this 900 km are covered by approximately round. However, a change from three-point lead reduced to 700 km / round which represents a decrease of 22% in the route. This reduction should help improve response time to emergency care, improving the level of service provided by the increase of solved cases, reducing police shifts and routing preventive patrols
Resumo:
The increasing of pollution in aquatic ecosystems in the last decades has caused an expansion of eutrophication and loss of water quality for human consumption. The increase of frequency and intensity of cyanobacteria blooms have been recognized as a major problem connected to water quality and eutrophication. The knowledge of environmental factors controlling these blooms is a key step towards the management for recovering aquatic ecosystems from eutrophic conditions. Primary productivity in aquatic ecosystems is dependent on light and nutrients availability. In the present work we evaluated the relative importance of the concentration of major nutrients, such as phosphorus and nitrogen, and light for phytoplankton growth in the main water reservoir of Rio Grande do Norte State, named Engenheiro Armando Ribeiro Gonçalves (EARG), which is an eutrophic system, dominated by potentially toxic cyanobacteria populations. Limitation of phytoplankton growth was evaluated through bioassays using differential enrichment of nutrients (N and/or P) under two light conditions (low light and high light) and monthly monitoring of chlorophyll-a and nutrients (total nitrogen and phosphorus) concentrations, and water transparency (Secchi depth) at the pelagic region. Our results confirm that EARG reservoir is an eutrophic system with a low water quality. Results of bioassays on the growth of phytoplankton limitation (N or P) were conflicting with the results predicted by the TN:TP ratios, which indicates that these ratios were not a good indicator of algal growth limitation. Nitrogen was the limiting nutrient, considering both frequency and magnitude. Light and hidrology affected phytoplankton response to nutrient enrichment. The extreme eutrophic conditions of this reservoir, dominated by cyanobacteria blooms, demand urgent managing strategies in order to guarantee the multiple uses for this system, including water supply for human population. Although nitrogen is the limiting nutrient, an effective management program must focus on the reduction of both phosphorus and nitrogen input
Resumo:
Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.
Resumo:
Ceramic materials alumina basis have been widely used in structural components, mainly because owning properties such as high hardness, chemical inertness and good wear resistance, however, the low toughness is a factor that compromises its use in many other applications, featuring the addition of nickel as a possible solution to this problem, in this context, this work aims to study the addition of nickel alumina using the route of powder metallurgy processing of the material. The percentage of nickel were added 2, 4 and 6 wt%; and each composition to high energy milling in a planetary mill was performed for 2, 4, 9 and 16h. Subsequently, the samples were compacted at 300 MPa and sintered in a vacuum oven at 1400⁰C for 2h. The samples were characterized as the physical and mechanical properties, observing, in general, an improvement in sinterability of the material with increasing grinding time and nickel content, and mixing with a decrease of porosity and increase of hardness, density values above 80% of theoretical were obtained. The milling time of 4 hours and addition of 2% nickel, particularly if achieved higher hardness (HV 1068.7 +/- 32.6) and density of about 99% theoretical density.
Resumo:
Ceramic materials alumina basis have been widely used in structural components, mainly because owning properties such as high hardness, chemical inertness and good wear resistance, however, the low toughness is a factor that compromises its use in many other applications, featuring the addition of nickel as a possible solution to this problem, in this context, this work aims to study the addition of nickel alumina using the route of powder metallurgy processing of the material. The percentage of nickel were added 2, 4 and 6 wt%; and each composition to high energy milling in a planetary mill was performed for 2, 4, 9 and 16h. Subsequently, the samples were compacted at 300 MPa and sintered in a vacuum oven at 1400⁰C for 2h. The samples were characterized as the physical and mechanical properties, observing, in general, an improvement in sinterability of the material with increasing grinding time and nickel content, and mixing with a decrease of porosity and increase of hardness, density values above 80% of theoretical were obtained. The milling time of 4 hours and addition of 2% nickel, particularly if achieved higher hardness (HV 1068.7 +/- 32.6) and density of about 99% theoretical density.