4 resultados para Probability Density-function

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we studied the asymptotic unbiasedness, the strong and the uniform strong consistencies of a class of kernel estimators fn as an estimator of the density function f taking values on a k-dimensional sphere

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This present work uses a generalized similarity measure called correntropy to develop a new method to estimate a linear relation between variables given their samples. Towards this goal, the concept of correntropy is extended from two variables to any two vectors (even with different dimensions) using a statistical framework. With this multidimensionals extensions of Correntropy the regression problem can be formulated in a different manner by seeking the hyperplane that has maximum probability density with the target data. Experiments show that the new algorithm has a nice fixed point update for the parameters and robust performs in the presence of outlier noise.