19 resultados para Porous media

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multiphase flow occurrence in the oil and gas industry is common throughout fluid path, production, transportation and refining. The multiphase flow is defined as flow simultaneously composed of two or more phases with different properties and immiscible. An important computational tool for the design, planning and optimization production systems is multiphase flow simulation in pipelines and porous media, usually made by multiphase flow commercial simulators. The main purpose of the multiphase flow simulators is predicting pressure and temperature at any point at the production system. This work proposes the development of a multiphase flow simulator able to predict the dynamic pressure and temperature gradient in vertical, directional and horizontal wells. The prediction of pressure and temperature profiles was made by numerical integration using marching algorithm with empirical correlations and mechanistic model to predict pressure gradient. The development of this tool involved set of routines implemented through software programming Embarcadero C++ Builder® 2010 version, which allowed the creation of executable file compatible with Microsoft Windows® operating systems. The simulator validation was conduct by computational experiments and comparison the results with the PIPESIM®. In general, the developed simulator achieved excellent results compared with those obtained by PIPESIM and can be used as a tool to assist production systems development

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discrepancies between classical model predictions and experimental data for deep bed filtration have been reported by various authors. In order to understand these discrepancies, an analytic continuum model for deep bed filtration is proposed. In this model, a filter coefficient is attributed to each distinct retention mechanism (straining, diffusion, gravity interception, etc.). It was shown that these coefficients generally cannot be merged into an effective filter coefficient, as considered in the classical model. Furthermore, the derived analytic solutions for the proposed model were applied for fitting experimental data, and a very good agreement between experimental data and proposed model predictions were obtained. Comparison of the obtained results with empirical correlations allowed identifying the dominant retention mechanisms. In addition, it was shown that the larger the ratio of particle to pore sizes, the more intensive the straining mechanism and the larger the discrepancies between experimental data and classical model predictions. The classical model and proposed model were compared via statistical analysis. The obtained p values allow concluding that the proposed model should be preferred especially when straining plays an important role. In addition, deep bed filtration with finite retention capacity was studied. This work also involves the study of filtration of particles through porous media with a finite capacity of filtration. It was observed, in this case, that is necessary to consider changes in the boundary conditions through time evolution. It was obtained a solution for such a model using different functions of filtration coefficients. Besides that, it was shown how to build a solution for any filtration coefficient. It was seen that, even considering the same filtration coefficient, the classic model and the one here propposed, show different predictions for the concentration of particles retained in the porous media and for the suspended particles at the exit of the media

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the displacement of petroleum/diesel solutions, at different concentrations, observing the effect of ultrasonic vibrations in fluids present in porous media to obtain an increase in oil production. The bubbles produced by ultrasound implode asymmetrically in the rock, generating liquid jets with high speed, displacing the oil present in porous media. The oil/diesel solutions were prepared with concentrations ranging from 20 g/L to 720 g/L in oil in relation to diesel and its viscosities were obtained in a Brookfield Rheometer RS2000, with temperature ranging from 25 to 55 °C. After, calculations were performed to obtain the activation energy data for oil/diesel solutions. For oil recovery experiments, cylindrical samples of porous rock (core samples), with resin around the perimeter and its two circular bases free to allow the passage of fluids, were first saturated with 2% KCl solution and after with oil solutions. The results of oil extraction were satisfactory for all studied solutions, being obtained up to 68% partial displacement with saline solution injection. The ultrasound system was used after saline injection, increasing oil displacement, with oil extractions ranging from 63% to 79%. During the experiments, it was observed the warming of core samples, helping to reduce the viscosity of more concentrated systems, and consequently enhancing the percentage of advanced recovery for all studied solutions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of products whose purpose is to promote blockages in high permeability zones as well as to control the hydrate or scale formation also needs some tests in porous media before using the product in the field, where attempts and unavoidable operational errors costs would able to derail any projects. The aim of this study was to analyze and compare the Botucatu and Berea sandstones properties, involving problems related to loss permeability. It was observed that even cores of Berea, without expansible clays in their composition had their permeability reduced, as soon as the salinity of brine reached a lower limit. As expected, the same happened with the Botucatu sandstone samples, however, in this case, the sensitivity to low salinity was more pronounced. In a second phase, the research was focused on the Botucatu Sandstone behavior front of dilute polymer solutions injection, checking the main relationships between the Rock / Fluid interactions, considering the Mobility Reduction, Resistance and Residual Resistance Factors, as well as adsorption/desorption processes of these polymers, and the polymer molecules average size and porous sandstone average size ratio. The results for both phases showed a real feasibility of using the Botucatu sandstone in laboratory tests whose objective is the displacement of fluids through porous media

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reservoirs that present highly viscous oils require methods to aid in their recovery to the surface. The elev ated oil viscosity hinders its flow through porous media and conventional recovery methods have not obtained significant efficiency. As such, the injection of steam into the reservoir through an injection well has been the most widely used method of therma l recovery, for it allows elevated volumes of recovery due to the viscosity reduction of the oil, facilitating the oil’s mobility within the rock formation and consequently into the production well where it will be exploited. On the other hand, the injecti on of vapor not only affects the fluids found in the rock pores, but the entire structure that composes the well where it is injected due to the high temperatures used in the process. This temperature increment is conducted to the cement, found in the annu lus, responsible for the isolation of the well and the well casing. Temperatures above 110 ̊C create new fazes rich in calcium in the cement matrix, resulting in the reduction of its permeability and the consequential phenomenon of mechanical resistance ret rogression. These alterations generate faults in the cement, reducing the well’s hydraulic isolation, creating insecurity in the operations in which the well will be submitted as well as the reduction of its economic life span. As a way of reducing this re trograde effect, this study has the objective of evaluating the incorporation of rice husk ash as a mineral additive substitute of silica flour , commercially utilized as a source of silica to reduce the CaO/SiO 2 ratio in the cement pastes submitted to high temperatures in thermal recovery. Cement pastes were formulated containing 20 and 30% levels of ash, apart from the basic paste (water + cement) and a reference paste (water + cement + 40% silica flour) for comparison purposes. The tests were executed th rough compression resistance tests, X - Ray diffraction (XRD) techniques, thermogravimetry (TG), scanning electron microscopy (SEM) and chemical anal ysis BY X - ray fluorescence (EDS) on the pastes submitted to cure at low temperatures (45 ̊C) for 28 days following a cure at 280 ̊C and a pressure of 2,000 PSI for 3 days, simulating vapor injection. The results obtained show that the paste containing 30% r ice shell ash is satisfactory, obtaining mechanical resistance desired and equivalent to that of the paste containing 40% silica flour, since the products obtained were hydrated with low CaO/SiO 2 ratio, like the Tobermorita and Xonotlita fases, proving its applicability in well subject to vapor injection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of home refrigerators generally are compact and economic reasons for using simplified configuration. The thermodynamic coefficient of performance ( COP ) is limited mainly in the condenser design for reasons of size and arrangement ( layout ) of the project ( design ) and climatic characteristics of the region where it will operate. It is noteworthy that this latter limitation is very significant when it comes to a country of continental size like Brazil with diverse climatic conditions. The COP of the cycle depends crucially on the ability of heat dissipated in the condenser. So in hot climates like the northeast, north, and west-central dispel ability is highly attenuated compared to the south and southeast regions with tropical or subtropical climates when compared with other regions. The dissipation in compact capacitors for applications in domestic refrigeration has been the focus of several studies, that due to its impact on reducing costs and power consumption, and better use of the space occupied by the components of refrigeration systems. This space should be kept to a minimum to allow an increase in the useful storage volume of refrigerator without changing the external dimensions of the product. Due to its low cost manufacturing, wire on tube condensers continue to be the most advantageous option for domestic refrigeration. Traditionally, these heat exchangers are designed to operate under natural convection. Not always, the benefits of greater compactness of capacitors for forced outweigh the burden of pumping air through the external heat exchanger. In this work we propose an improvement in convective condenser changing it to a transfer mechanism combined in series with conductive pipes and wire to a moist convective porous medium and the porous medium to the environment. The porous media used in the coating was composed of a gypsum plaster impregnated fiber about a mesh of natural cellulosic molded tubular wire mesh about the original structure of the condenser , and then dried and calcined to greater adherence and increased porosity. The proposed configuration was installed in domestic refrigeration system ( trough ) and tested under the same conditions of the original configuration . Was also evaluated in the dry condition and humidified drip water under natural and forced with an electro - fan ( fan coil ) convection. Assays were performed for the same 134- refrigerant charge e under the same thermal cooling load. The performance was evaluated in various configurations, showing an improvement of about 72 % compared with the original configuration proposed in humidification and natural convection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models