17 resultados para Polymerization kinetics and DSC
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Polyurethanes are very versatile macromolecular materials that can be used in the form of powders, adhesives and elastomers. As a consequence, they constitute important subject for research as well as outstanding materials used in several manufacturing processes. In addition to the search for new polyurethanes, the kinetics control during its preparation is a very important topic, mainly if the polyurethane is obtained via bulk polymerization. The work in thesis was directed towards this subject, particularly the synthesis of polyurethanes based castor oil and isophorone diisocianate. As a first step castor oil characterized using the following analytical methods: iodine index, saponification index, refraction index, humidity content and infrared absorption spectroscopy (FTIR). As a second step, test specimens of these polyurethanes were obtained via bulk polymerization and were submitted to swelling experiments with different solvents. From these experiments, the Hildebrand parameter was determined for this material. Finally, bulk polymerization was carried out in a differential scanning calorimetry (DSC) equipment, using different heating rates, at two conditions: without catalyst and with dibutyltin dilaurate (DBTDL) as catalyst. The DSC curves were adjusted to a kinetic model, using the isoconversional method, indicating the autocatalytic effect characteristic of this class of polymerization reaction
Resumo:
Bioidentical hormones are defined as compounds that have exactly the same chemical and molecular structure as hormones that are produced in the human body. It is believed that the use of hormones may be safer and more effective than the non-bioidentical hormones, because binding to receptors in the organism would be similar to the endogenous hormone. Bioidentical estrogens have been used in menopausal women, as an alternative to traditional hormone replacement therapy. Thermal data of these hormones are scarce in literature. Thermal analysis comprises a group of techniques that allows evaluating the physical-chemistry properties of a drug, while the drug is subjected to a controlled temperature programming. The thermal techniques are used in pharmaceutical studies for characterization of drugs, purity determination, polymorphism identification, compatibility and evaluation of stability. This study aims to characterize the bioidentical hormones estradiol and estriol through thermal techniques TG/DTG, DTA, DSC, DSC-photovisual. By the TG curves analysis was possible to calculated kinetic parameters for the samples. The kinetic data showed that there is good correlation in the different models used. For both estradiol and estriol, was found zero order reaction, which enabled the construction of the vapor pressure curves. Data from DTA and DSC curves of melting point and purity are the same of literature, showed relation with DSC-photovisual results. The analysis DTA curves showed the fusion event had the best linearity for both hormones. In the evaluation of possible degradation products, the analysis of the infrared shows no degradation products in the solid state
Resumo:
Since its synthesis over 48 years rifampicin has been extensively studied. The literature reports the characterization of thermal events for rifampicin in nitrogen atmosphere, however, no characterization in synthetic air atmosphere. This paper aims to contribute to the thermal study of rifampicin through thermal (TG / DTG, DTA, DSC and DSC - FOTOVISUAL ) and non-thermal (HPLC, XRPD , IR - FTIR , PCA) and its main degradation products ( rifampicin quinone , rifampicin N-oxide 3- formylrifamicin). Rifampicin study was characterized as polymorph form II from techniques DSC, IR and XRPD. TG curves for rifampicin in synthetic air atmosphere showed higher thermal stability than those in N2, when analyzed Ti and Ea. There was characterized as overlapping events melting and recrystallization under N2 with weight loss in the TG curve, suggesting concomitant decomposition. Images DSCFotovisual showed no fusion event and showed darkening of the sample during analysis. The DTA curve in synthetic air atmosphere was visually different from DTA and DSC curves under N2, suggesting the absence of recrystallization and melting or presence only decomposition. The IV - FTIR analysis along with PCA analysis and HPLC and thermal data suggest that rifampicin for their fusion is concomitant decomposition of the sample in N2 and fusion events and recrystallization do not occur in synthetic air atmosphere. Decomposition products studied in an air atmosphere showed no melting event and presented simultaneously to the decomposition initiation of heating after process loss of water and / or solvent, varying the Ti initiating events. The Coats - Redfern , Madsudhanan , Van Krevelen and Herwitz - Mertzger kinetic parameters for samples , through the methods of OZAWA , in an atmosphere of synthetic air and / or N2 rifampicin proved more stable than its degradation products . The kinetic data showed good correlation between the different models employed. In this way we contribute to obtaining information that may assist studies of pharmaceutical compatibility and stability of substances
Resumo:
The recent interest in obtaining functionalized nanoporous materials for applications such as heterogeneous catalysts and adsorption of CO2 has increased today. In the latter application, the introduction of amino groups such as present in the chitosan (CS), in the nanoporous materials like SBA-15 to generate specific interactions with CO2 has gained importance. In this work were performed to hydrothermal synthesis of SBA-15 and subsequent impregnation of the CS in the support mesoporous by the method of the wet impregnation. The materials were characterized by TG/DTG, DSC, XRD, SEM, FTIR and adsorption / desorption of N2. The XRD showed that the ordered structure of the support SBA-15 was preserved after the impregnation and calculations have shown that the average pore diameter (Dp) and / or the average wall thickness (wt) have been changed due to introduction of the CS in the samples functionalized. The curves of TG and DSC data corroborates the XRD, indicating the presence of CS in the nanoporous structure of SBA-15, as well as micrographs of samples, which allowed the display state of aggregation of the material obtained. The characteristics of bands absorption in the region of the CS in the FTIR were identified and interpreted in the samples functionalized, confirming the further characterization. Measurements showed that the BET surface area decreases in the functionalized samples, indicating the successive incorporation of the polymer in the nanoporous support. The activation energy apparent (Ea) for the process of thermal degradation of CS in the impregnated support was determined by the methods of kinetic freedom Vyazovkin and Ozawa-Flynn-Wall with the results indicating that the sample functionalized CS/SBA-15 2,5 % was decrease of the Ea in their degradation of about 10% compared to 1,0 % CS/SBA-15 sample
Resumo:
The infection caused by Helicobacter pylori (H. pylori) is associated with gastroduodenal inflammation can lead to the development of gastritis, gastric or duodenal ulcer and gastric cancer (type 1 carcinogen for stomach cancer). Amoxicillin is used as first-line therapy in the treatment of H. pylori associated to metronidazole or clarithromycin, and a proton pump inhibitor. However, the scheme is not fully effective due to inadequate accumulation of antibiotics in gastric tissue, inadequate efficacy of ecological niche of H. pylori, and other factors. In this context, this study aimed to obtaining and characterization of particulate systems gastrorretentivos chitosan - amoxicillin aiming its use for treatment of H. pylori infections. The particles were obtained by the coacervation method / precipitation using sodium sulfate as precipitating agent and crosslinking and two techniques: addition of amoxicillin during preparation in a single step and the sorption particles prior to amoxycillin prepared by coacervation / precipitation and spray drying. The physicochemical characterization of the particles was performed by SEM, FTIR, DSC, TG and XRD. The in vitro release profile of amoxycillin free and incorporated in the particles was obtained in 0.1 N HCl (pH = 1.2). The particles have higher encapsulation efficiency to 80% spherical shape with interconnected particles or adhered to each other, the nanometric diameter to the systems obtained by coacervation / precipitation and fine for the particles obtained by spray drying. The characterization by FTIR, DSC and XRD showed that the drug was incorporated into the nanoparticles dispersed in the polymeric matrix. Thermal analysis (TG and DSC) indicated that encapsulation provides greater heat stability to the drug. Amoxicillin encapsulated in nanoparticles had slower release compared to free drug. The particles showed release profile with a faster initial stage (burst effect) reaching a maximum at 30 minutes 35% of amoxicillin for the system in 1: 1 ratio relative to the polymer and 80% for the system in the ratio 2: 1. Although simple and provide high encapsulation efficiency of amoxicillin, the process of coacervation, precipitation in one step using sodium sulfate as precipitant / cross-linker must be optimized in order to adjust the release kinetics according to the intended application.
Resumo:
In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)
Resumo:
This work aims at obtaining nanoparticles of iron oxide, the magnetite one (Fe3O4), via synthesis by thermal decomposition through polyol. Thus, two routes were evaluated: a simple decomposition route assisted by reflux and a hydrothermal route both without synthetic air atmosphere using a synthesis temperature of 260ºC. In this work observed the influence of the observe of surfactants which are generally applied in the synthesis of iron oxide nanoparticles decreasing cluster areas. Further, was observed pure magnetite phase without secondary phases generally found in the iron oxide synthesis, a better control of crystallite size, morphology, crystal structure and magnetic behavior. Finally, the introduction of hydroxyl groups on the nanoparticles surface was analyzed besides its employment in the polymer production with OH radicals. The obtained materials were characterized by XRD, DLS, VSM, TEM, TG and DSC analyses. The results for the magnetite obtainment with a particle size greater than 5 nm and smaller than 11 nm, well defined morphology and good magnetic properties with superparamagnetic behavior. The reflux synthesis was more efficient in the deposition of the hydroxyl groups on the nanoparticles surface
Resumo:
This thesis aimed to assess the increase in solubility of simvastatin (SINV) with solid dispersions using techniques such as kneading (MA), co-solvent evaporation (ES), melting carrier (FC) and spray dryer (SD). Soluplus (SOL), PEG 6000 (PEG), PVP K-30 (PVP) e sodium lauryl sulphate (LSS) were used as carriers. The solid dispersions containing PEG [PEG-2(SD)], Soluplus [SOL-2(MA)] and sodium lauryl sulphate [LSS-2(ES)] were presented with a greater increase in solubility (5.02, 5.60 and 5.43 times respectively); analyses by ANOVA between the three groups did not present significant difference (p<0.05). In the phase solubility study, the calculation of the Gibbs free energy (ΔG) revealed that the spontaneity of solubilisation of SINV occurred in the order SOL>PEG >PVP 75%>LSS, always 80%. The phase diagrams of PEG and LSS presented solubilization stoichiometry of type 1:1 (type AL). The diagrams with PVP and SOL tend to 1:2 stoichiometry (type AL + AP). The stability coefficients (Ks) of the phase diagrams revealed that the most stable reactions occurred with LSS and PVP. The solid dispersions were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD), near-infrared spectroscopy imaging (NIR-CI) and X-ray diffraction of the powder using the Topas software (PDRX-TOPAS). The solid dispersion PEG-2(SD) presented the greatest homogeneity and the lowest degree of crystallinity (18.2%). The accelerated stability study revealed that the solid dispersions are less stable than SINV, with PEG-2(SD) being the least stable, confirmed by FTIR and DSC. The analyses by PDRX-TOPAS revealed the amorphous character of the dispersions and the mechanism of increasing solubility
Resumo:
The extraction with pressurized fluids has become an attractive process for the extraction of essential oils, mainly due the specific characteristics of the fluids near the critical region. This work presents results of the extraction process of the essential oil of Cymbopogon winterianus J. with CO2 under high pressures. The effect of the following variables was evaluated: solvent flow rate (from 0.37 to 1.5 g CO2/min), pressure (66.7 and 75 bar) and temperature (8, 10, 15, 20 and 25 ºC) on the extraction kinetics and the total yield of the process, as well as in the solubility and composition of the C. winterianus essential oil. The experimental apparatus consisted of an extractor of fixed bed and the dynamic method was adopted for the calculation of the oil solubility. Extractions were also accomplished by conventional techniques (steam and organic solvent extraction). The determination and identification of extract composition were done by gas chromatography coupled with a mass spectrometer (GC-MS). The extract composition varied in function of the studied operational conditions and also related to the used extraction method. The main components obtained in the CO2 extraction were elemol, geraniol, citronellol and citronellal. For the steam extraction were the citronellal, citronellol and geraniol and for the organic solvent extraction were the azulene and the hexadecane. The most yield values (2.76%) and oil solubility (2.49x10-2 g oil/ g CO2) were obtained through the CO2 extraction in the operational conditions of T = 10°C, P = 66.7 bar and solvent flow rate 0.85 g CO2/min
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated
Resumo:
Due to its physico-chemical and biological properties, related to the abundance and low cost of raw material, chitosan has been recognized as a material of wide application in various fields, such as in drug delivery systems. Many of these properties are associated with the presence of amino groups in its polymer chain. A proper determination of these amino groups is very important, in order to properly specify if a given chitosan sample can be used in a particular application. Thus, in this work, initially, a comparison between the determination of the deacetylation degree by conductometry and elemental analysis was carried out using a detailed analysis of error propagation. It was shown that the conductometric analysis resulted in a simple and safe method for the determining the degree of deacetylation of chitosan. Subsequently, experiments were performed to monitor and characterize the adsorption of tetracycline on chitosan particles through kinetic and equilibrium studies. The main models of kinetics and adsorption isotherms, widely used to describe the adsorption on wastewater treatment systems and the drug loading, were used to treat the experimental data. Firstly, it was shown that an apparent linear t/q(t) × t relationship did not imply in a pseudo-second-order adsorption kinetics, differently of what has been repeatedly reported in the literature. It was found that this misinterpretation can be avoided by using non-linear regression. Finally, the adsorption of tetracycline on chitosan particles was analyzed using insights obtained from theoretical analysis, and the parameters generated were used to analyze the kinetics of adsorption, the isotherm of adsorption and to ropose a mechanism of adsorption
Resumo:
This work aims to study the effects of adding antioxidants, such as, α- tocopherol and BHT on the thermal and oxidative stability of biodiesel from cottonseed (B100). The Biodiesel was obtained through the methylical and ethylical routes. The main physical and chemical properties of cotton seed oil and the B100 were determined and characterized by FTIR and GC. The study of the efficiency of antioxidants, mentioned above, in concentrations of 200, 500, 1000, 1500, 2000ppm, to thermal and oxidative stability, was achieved by Thermogravimetry (TG), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Differential Scanning Calorimetry - Hi-Pressure (P-DSC) and Rancimat. The Biodiesel obtained are within the specifications laid down by Resolution of ANP No7/2008. The results of TG curves show that the addition of both antioxidants, even in the lowest concentration, increases the thermal stability of Biodieseis. Through the DTA and DSC it was possible to study the physical and chemical transitions occurred in the process of volatilization and decomposition of the material under study. The initial time (OT) and temperature (Tp) of oxidation were determined through the P-DSC curve and they showed that the α-tocopherol has a pro-oxidant behavior for some high concentrations. The BHT showed better results than the α-tocopherol, with regard to the resistance to oxidation