22 resultados para Polycyclic aromatic hydrocarbons

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tangara da Serra is located on southwestern Mato Grosso and is found to be on the route of pollutants dispersion originated in the Legal Amazon s deforestation area. This region has also a wide area of sugarcane culture, setting this site quite exposed to atmospheric pollutants. The objective of this work was to evaluate the genotoxicity of three different concentrations of organic particulate matter which was collected from August through December / 2008 in Tangara da Serra, using micronucleus test in Tradescantia pallida (Trad-MCN). The levels of particulate matter less than 10μm (MP10) and black carbon (BC) collected on the Teflon and polycarbonate filters were determined as well. Also, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified on the samples from the burning period by gas chromatography detector with flame ionization detection (GC-FID). The results from the analyzing of alkanes indicate an antropic influence. Among the PAHs, the retene was the one found on the higher quantity and it is an indicator of biomass burning. The compounds indene(1,2,3-cd)pyrene and benzo(k)fluoranthene were identified on the samples and are considered to be potentially mutagenic and carcinogenic. By using Trad-MCN, it was observed a significant increase on the micronucleus frequency during the burning period, and this fact can be related to the mutagenic PAHs which were found on such extracts. When the period of less burnings is analyzed and compared to the negative control group, it was noted that there was no significant difference on the micronuclei rate. On the other hand, when the higher burning period is analyzed, statistically significant differences were evident. This study showed that the Trad-MCN was sensible and efficient on evaluating the genotoxicity potencial of organic matter from biomass burning, and also, emphasizes the importance of performing a chemical composition analysis in order to achieve a complete diagnosis on environmental risk control

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuaries are environments prone to the input of chemical pollutants of various kinds and origins, including polycyclic aromatic hydrocarbons (PAHs). Anthropogenic PAHs may have two possible sources: pyrolytic (with four or more aromatic rings and low degree of alkylation) and petrogenic (with two and three aromatic rings and high degree of alkylation). This study aimed to evaluate the levels, distribution and possible sources of polycyclic aromatic hydrocarbons in the estuary of the Potengi river, Natal, Brazil. Samples of bottom sediments were collected in the final 12 km of the estuary until its mouth to the sea, where the urbanization of the Great Natal is more concentrated. Sampling was performed on 12 cross sections, with three stations each, totaling 36 samples, identified as T1 to T36. The non alkylated and alkylated PAHs were analyzed by gas chromatography coupled to mass spectrometry (GC / MS). PAHs were detected in all 36 stations with total concentration on each varying 174-109407 ng g-1. These values are comparable to those of several estuarine regions worldwide with high anthropogenic influence, suggesting the record of diffuse contamination installed in the estuary. PAHs profiles were similar for most stations. In 32 of the 36 stations, low molecular weight PAHs (with 2 and 3 ring: naphthalene, phenanthrene and their alkylated homologues) prevailed, which ranged from 54% to 100% of the total PAH, indicating that leaks, spills and combustion fuels are the dominant source of PAH pollution in the estuary. The level of contamination by PAHs in most stations suggests that there is potential risk of occasional adverse biological effects, but in some stations adverse impacts on the biota may occur frequently. The diagnostic ratios could differentiate sources of PAHs in sediments of the estuary, which were divided into three groups: petrogenic, pyrolytic and mixing of sources. The urban concentration of the Great Natal and the various industrial activities associated with it can be blamed as potential sources of PAHs in bottom sediments of the estuary studied. The data presented highlight the need to control the causes of existing pollution in the estuary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retail fuel stations are partially or potentially polluters and generators of environmental accidents, potentially causing contamination of underground and surface water bodies, soil and air. Leaks in fuel retail stations´ underground storage systems are often detected in Brazil and around the world. Monoaromatic hydrocarbons, BTEX (benzene, toluene, ethylbenzene and xylenes) and polycyclic aromatic hydrocarbons (PAHs) are an indication of the presence of contamination due to its high toxicity. This paper presents a case study of contamination in a Fuel Retail Station by petroleum derivative products in the city of Natal. For identification and quantification of the hydrocarbons, EPA analytical methods were used. The values of benzene quantified by EPA method 8021b CG-PID/FID, ranged from 1.164 to 4.503 mg.Kg-1 in soil samples, and from 12.10 to 27,639 μg.L-1 in underground water samples. Among the PAHs, naphthalene and anthracene showed the most significant results in soil samples, 0.420 to 15.46 mg.Kg-1 and 0.110 to 0,970 mg.Kg-1, respectively. In underground water samples, the results for Naphthalene varied between 0.759 and 614.7 μg.L-1. PAHs were quantified by EPA Method 8270 for GCMS. All of the results for the chemical analysis were compared with the values for the CONAMA 420/2009 resolution. The results for benzene (27,639 μg.L-1) showed levels highly above the recommended by the CONAMA 420 resolution, wherein the maximum permissible for underground water is 5 μg.L-1. This is a worrying factor, since underground water makes up 70% of the city of Natal´s water supply

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the native prokaryotes in hazardous locations favors the application of biotechnology for bioremediation. Independent strategies for cultivation and metagenomics contribute to further microbiological knowledge, enabling studies with non-cultivable about the "native microbiological status and its potential role in bioremediation, for example, of polycyclic aromatic hydrocarbons (HPA's). Considering the biome mangrove interface fragile and critical bordering the ocean, this study characterizes the native microbiota mangrove potential biodegradability of HPA's using a biomarker for molecular detection and assessment of bacterial diversity by PCR in areas under the influence of oil companies in the Basin Petroleum Geology Potiguar (BPP). We chose PcaF, a metabolic enzyme, to be the molecular biomarker in a PCR-DGGE detection of prokaryotes that degrade HPA s. The PCR-DGGE fingerprints obtained from Paracuru-CE, Fortim-CE and Areia Branca-RN samples revealed the occurrence of fluctuations of microbial communities according to the sampling periods and in response to the impact of oil. In the analysis of microbial communities interference of the oil industry, in Areia Branca-RN and Paracuru-CE was observed that oil is a determinant of microbial diversity. Fortim-CE probably has no direct influence with the oil activity. In order to obtain data for better understanding the transport and biodegradation of HPA's, there were conducted in silico studies with modeling and simulation from obtaining 3-D models of proteins involved in the degradation of phenanthrene in the transport of HPA's and also getting the 3-D model of the enzyme PcaF used as molecular marker in this study. Were realized docking studies with substrates and products to a better understanding about the transport mechanism and catalysis of HPA s

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The petroleum industry deals with problems which are difficult to solve because of their relation to environmental issues. This is because amounts of residue are generated which vary in type and danger level. The soil contamination by non aqueous liquid phase mixtures, specifically hydrocarbon petroleum has been a reason for great concern, mainly the aromatic and polycyclic aromatic, which present risk to human health due to its carcinogenic and mutagenic character. The Advanced Oxidative Processes (AOP) are efficient technologies for destruction of organic compounds of difficult degradation and, often, they are present in low concentrations. They can be considered clean technologies, because there is no formation of solid by-products or the transfer of pollutor phases. This work focuses on the study of the degradation of petroleum industrial waste, by Advanced Oxidation Processes. Treatments tackling petroleum residues, contaminated soil, and water occurring in the production of petroleum reached the following Polycyclic Aromatic Hydrocarbons (PAH) degradation levels: solid residues 100% in 96 treatment hours; water residue - 100% in 6 treatment hours; soil contamination (COT degradation) - 50.3% in 12 treatment hours. AOP were effective in dealing with petroleum residues thus revealing themselves to be a promising treatment alternative

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PAHs (Polycyclic Aromatic Hydrocarbons) are a group of organic substances which receive considerable attention because of the carcinogenic and mutagenic properties of some of them. It is therefore important to determine the PAHs in different environmental matrices. Several studies have shown the use of gas chromatography coupled to mass spectrometry as a technique for quantification of PAHs by presenting excellent detection limits. This study aimed to develop an analytical methodology for the determination of 16 PAHs listed by the USEPA, test two methods for extraction of PAHs in water from a 23 factorial design, quantify them through the analytical technique coupled to gas chromatography mass spectrometry (GC/MS) using the method developed, and finally apply the results in chemometrics. The sample was synthesized and subjected to tests of the 23 factorial design, which has the factors: the type of extraction technique (ultrasound and digester), the ratio solvent / sample (1:1 and 1:3) and the type of solvent (dichloromethane / hexane and acetone / dichloromethane). The responses of eight combinations of the factorial design were obtained from the quantification by external calibration in GC/MS. The quantification method was developed from an optimized adaptation of the USEPA Method 8270. We used the full scan mode as a way of acquiring the mass spectra of 16 PAHs. The time in which the samples were subjected to ultrasound was fixed at 10 min and held an investigation to establish the conditions of power and time in the digester. We had the best response in the investigation of the digester power of 100 watts and the time of six minutes. The factorial design of liquid-liquid extraction showed that the most representative factors were: the use of the digester as extraction technique, the ratio solvent / sample 1:1 and the use of a 1:1 mixture of dichloromethane / hexane as a solvent more suitable. These results showed that the 1:1 mixture of dichloromethane / hexane is an excellent mixture to recover the extraction of PAHs an aqueous sample using the microwave digester. The optimization of the method of separation, identification and quantification of PAHs in the GC/MS was valid for 16 PAHs present in each chromatogram of the samples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) constitute a family of compounds characterized by having two or more condensed aromatic rings and for being a class of substances that are widely distributed in the environment as a complex mixture, being very persistent in the environment due to its low solubility in water. The application of chemometric methods to analytical chemistry has provided excellent results in studying the solubility of PAHs in aqueous media in order to understand the mechanisms involved in environmental contamination. The method consists in analyzing the solubilization of PAHs from diesel oil in water varying parameters such as stirring time, volume of oil added and pH, using a full factorial design of two levels and three factors. PAHs were extracted with n-hexane and analyzed by fluorescence spectroscopy because they have molecular characteristics fluorescent due to the large number of condensed rings and links, and gas chromatography coupled to a mass spectrometer (GC-MS). The results of fluorescence analysis showed that only the stirring time and pH influenced the solubility of PAHs in diesel fuel. How is a non-selective technique for the study of fluorescence was performed on form and semi-quantitative. And for the chromatographic analysis the results showed that the solubility of the different PAHs is influenced differently so that you can classify them into groups by the results of the effects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to detect polycyclic aromatic hydrocarbons (PAHs) through optimized analytical techniques, such as gas chromatography with flame-ionisation detector (CGFID), gas chromatography coupled to mass spectrometry (CGMS), Fluorescence Spectroscopy of Molecular and Purpot of oils and greases (POG). Apply to chemometrics, Factorial Planning 23, in the preparation of samples by liquid-liquid extraction. The sample preparation was used for liquid-liquid extraction and factors in this sample was used for the application of factorial planning 23, such as the use of ultrasound, solvents (dichloromethane, hexane and chloroform) and ratio of solvent / synthetic sample. These factors were assigned two types of levels: positive and negative. It was used to form the cube to better analyze the answers. The responses of the eight combinations were obtained in reading the spectrofluorimetric. The optimization of equipment were used, and they served in the HPA's identification of the samples collected in Rio Potengi. The optimization of the equipment was observed every 16's and PAH in the samples was found that the HPA's came from contamination of the Rio Potengi. The contamination comes through organic household waste, hospital waste, and among other contamination that comes from industries that are installed around the River The factorial design of high validity, it was observed a more effective sample preparation. The factorial design of liquid-liquid extraction showed a way to spend less solvent in less time using an ideal solvent, but also a way to extract more analyte from the matrix itself is water. In planning a smaller form factor extraction was the use of ultrasound, the ratio 1:3 corresponding to a solvent and sample 3 and the best solvent was dichloromethane who presented a viable extraction, not discarding the possibility of using also the hexane. The chloroform and may be toxic not had a good extraction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies on environmental ecosystems quality related to polycyclic aromatic hydrocarbons (PAH) have been carried out routinely due to their ubiquotus presence worldwide and to their potential toxicity after its biotransformation. PAH may be introduced into the environmet by natural and anthropogenic processes from direct runoff and discharges and indirect atmospheric deposition. Sources of naturally occurring PAHs include natural fires, natural oil seepage and recent biological or diagenetic processes. Anthropogenic sources of PAHs, acute or chronic, are combustion of organic matter (petroleum, coal, wood), waste and releases/spills of petroleum and derivatives (river runoff, sewage outfalls, maritime transport, pipelines). Besides the co-existence of multiples sources of PAH in the environmental samples, these compounds are subject to many processes that lead to geochemical fates (physical-chemical transformation, biodegradation and photo-oxidation), which leads to an alteration of their composition. All these facts make the identification of the hydrocarbons sources, if petrogenic, pyrolytic or natural, a challenge. One of the objectives of this study is to establish tools to identify the origin of hydrocarbons in environmental samples. PAH diagnostic ratios and PAH principal component analysis were tested on a critical area: Guanabara Bay sediments. Guanabara Bay is located in a complex urban area of Rio de Janeiro with a high anthropogenic influence, being an endpoint of chronic pollution from the Greater Rio and it was the scenario of an acute event of oil release in January 2000. It were quantified 38 compounds, parental and alkylated PAH, in 21 sediment samples collected in two surveys: 2000 and 2003. The PAH levels varied from 400 to 58439 ng g-1. Both tested techniques for origin identification of hydrocarbons have shown their applicability, being able to discriminate the PAH sources for the majority of the samples analysed. The bay sediments were separated into two big clusters: sediments with a clear pattern of petrogenic introduction of hydrocarbons (from intertidal area) and sediments with combustion characteristics (from subtidal region). Only a minority of the samples could not display a clear contribution of petrogenic or pyrolytic input. The diagnostic ratios that have exhibited high ability to distinguish combustion- and petroleum-derived PAH inputs for Guanabara Bay sediments were Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene); Fluorantene/(Fluorantene+Pyrene); Σ (other 3-6 ring PAHs)/ Σ (5 alkylated PAH series). The PCA results prooved to be a useful tool for PAH source identification in the environment, corroborating the diagnostic indexes. In relation to the temporal evaluation carried out in this study, it was not verified significant changes on the class of predominant source of the samples. This result indicates that the hydrocarbons present in the Guanabara Bay sediments are mainly related to the long-term anthropogenic input and not directly related to acute events such as the oil spill of January 2000. This findings were similar to various international estuarine sites. Finally, this work had a complementary objective of evaluating the level of hydrocarbons exposure of the aquatic organisms of Guanabara Bay. It was a preliminary study in which a quantification of 12 individual biliar metabolites of PAH was performed in four demersal fish representing three different families. The analysed metabolites were 1-hydroxynaphtalene, 2-hidroxinaphtalene, 1hydroxyphenanthrene, 9-hydroxyphenanthrene, 2-hydroxyphenanthrene, 1hydroxypyrene, 3-hidroxibiphenil, 3- hydroxyphenanthrene, 1-hydroxychrysene, 9hydroxyfluorene, 4-hydroxyphenanthrene, 3-hydroxybenz(a)pyrene. The metabolites concentrations were found to be high, ranging from 13 to 177 µg g-1, however they were similar to worldwide regions under high anthropogenic input. Besides the metabolites established by the used protocol, it was possible to verified high concentrations of three other compounds not yet reported in the literature. They were related to pyrolytic PAH contribution to Guanabara Bay aquatic biota: 1-hydroxypyrine and 3-hydroxybenz(a)pyrine isomers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amazon holds over half of the planet's remaining tropical forests and comprises the largest biodiversity in the world, accounting for approximately 60 % of the Brazilian territory. However, deforestation fires in the region causes serious problems to exposed human. The aim of this study was to evaluate the chemical compounds as well as the cellular and molecular effects after exposure to organic material extracted from particulate matter less than 10 µm (PM10) in the Amazon region. As for the chemical composition, n-alkanes analysis showed a prevalence of anthropogenic influence during the fires in the region. In addition, there was a predominance of monosaccharides from biomass burning markers. Also, the Polycyclic Aromatic Hydrocarbons (PAH) and their derivatives have also been identified in samples collected in the Amazon. By using the PAH concentrations was possible to calculate the BaP-equivalent and it was found that the dibenz(a) anthracene contributes with 83% to potential carcinogenic risk. As for the potential mutagenic risk, the benzo (a) pyrene is the HPA that has a major contribution in this analysis. It may be noted that the retene was the most abundant PAH. This compound was genotoxic and cause death by necrosis in the human lung cells. In biological tests, the data showed that organic PM10 is capable of causing genetic damage in both plant cells and in human lung cells. This damage cause an arrest in the G1 phase of the cell cycle exposed, increasing the expression of p53 and p21. Additionally, the PM10 caused cell death by apoptosis, increasing the foci of histone - H2AX. Given these results, it is important to emphasize the reduction and better control of biomass burning in the Amazon region thus improving the quality of health of the population being exposed. As clearly stated recently by the World Health Organization, the reduction of air pollution could save millions of lives annually.