22 resultados para PHENANTHRENE SORPTION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
AZEVEDO, Luciana Karla Araújo de, et al. Caracterização e correlação do fenômeno pró-zona com títulos de sororeatividade do VDRL e reação de imuno-fluorescência indireta em soros de pacientes com sífilis. Revista Brasileira de Análises Clínicas, Rio de Janeiro, v. 38, n. 2, p. 183-187, 2006.
Resumo:
Nowadays, composite resins are the direct restorative materials more important in dental clinical performance, due to their versatility and aesthetic excellence. Bis-GMA (2,2-bis[4(2-hydroxy-3-metacryloxypropoxy)phenil]propane) is the base monomer more frequently used in restorative composite resins. However, this monomer presents some disadvantages, such as high viscosity and two aromatic rings in its structure that can promote allergic reactions to the humans. In this work, the main purpose was to synthesize new monomers from glycidyl methacrylate to use in dental restorative materials. Structural characterization of the monomers was carried out through FTIR and NMR 1H, and eight composites were produced from the new monomers, by addition of silane-treated alumino silicate particles (inorganic filler) and a photocuring system (camphorquinone and ethyl 4-dimethylaminebenzoate). The composites were analyzed by environmental scanning electronic microscopy and the water sorption and solubility, compressive strength and elastic modulus were determined. A commercial composite resin [Z100 (3M)] was used to comparison effect. The new composites presented general characteristics similar to the commercial ones; however, they didn t present the properties expected. This behavior was attributed to the lower degree of monomer reaction and to the granulometry and size distribution of the mineral filler in the polymeric matrix
Resumo:
Estuaries are environments prone to the input of chemical pollutants of various kinds and origins, including polycyclic aromatic hydrocarbons (PAHs). Anthropogenic PAHs may have two possible sources: pyrolytic (with four or more aromatic rings and low degree of alkylation) and petrogenic (with two and three aromatic rings and high degree of alkylation). This study aimed to evaluate the levels, distribution and possible sources of polycyclic aromatic hydrocarbons in the estuary of the Potengi river, Natal, Brazil. Samples of bottom sediments were collected in the final 12 km of the estuary until its mouth to the sea, where the urbanization of the Great Natal is more concentrated. Sampling was performed on 12 cross sections, with three stations each, totaling 36 samples, identified as T1 to T36. The non alkylated and alkylated PAHs were analyzed by gas chromatography coupled to mass spectrometry (GC / MS). PAHs were detected in all 36 stations with total concentration on each varying 174-109407 ng g-1. These values are comparable to those of several estuarine regions worldwide with high anthropogenic influence, suggesting the record of diffuse contamination installed in the estuary. PAHs profiles were similar for most stations. In 32 of the 36 stations, low molecular weight PAHs (with 2 and 3 ring: naphthalene, phenanthrene and their alkylated homologues) prevailed, which ranged from 54% to 100% of the total PAH, indicating that leaks, spills and combustion fuels are the dominant source of PAH pollution in the estuary. The level of contamination by PAHs in most stations suggests that there is potential risk of occasional adverse biological effects, but in some stations adverse impacts on the biota may occur frequently. The diagnostic ratios could differentiate sources of PAHs in sediments of the estuary, which were divided into three groups: petrogenic, pyrolytic and mixing of sources. The urban concentration of the Great Natal and the various industrial activities associated with it can be blamed as potential sources of PAHs in bottom sediments of the estuary studied. The data presented highlight the need to control the causes of existing pollution in the estuary
Resumo:
Knowledge of the native prokaryotes in hazardous locations favors the application of biotechnology for bioremediation. Independent strategies for cultivation and metagenomics contribute to further microbiological knowledge, enabling studies with non-cultivable about the "native microbiological status and its potential role in bioremediation, for example, of polycyclic aromatic hydrocarbons (HPA's). Considering the biome mangrove interface fragile and critical bordering the ocean, this study characterizes the native microbiota mangrove potential biodegradability of HPA's using a biomarker for molecular detection and assessment of bacterial diversity by PCR in areas under the influence of oil companies in the Basin Petroleum Geology Potiguar (BPP). We chose PcaF, a metabolic enzyme, to be the molecular biomarker in a PCR-DGGE detection of prokaryotes that degrade HPA s. The PCR-DGGE fingerprints obtained from Paracuru-CE, Fortim-CE and Areia Branca-RN samples revealed the occurrence of fluctuations of microbial communities according to the sampling periods and in response to the impact of oil. In the analysis of microbial communities interference of the oil industry, in Areia Branca-RN and Paracuru-CE was observed that oil is a determinant of microbial diversity. Fortim-CE probably has no direct influence with the oil activity. In order to obtain data for better understanding the transport and biodegradation of HPA's, there were conducted in silico studies with modeling and simulation from obtaining 3-D models of proteins involved in the degradation of phenanthrene in the transport of HPA's and also getting the 3-D model of the enzyme PcaF used as molecular marker in this study. Were realized docking studies with substrates and products to a better understanding about the transport mechanism and catalysis of HPA s
Resumo:
Nowadays, when accidents with oil tanker or shore tanks occur and there is oil spill, some arrangements are made in order to repress and to fix the situation. For the containment, barriers or detours are usually made of synthetic materials such as polyurethane foam. In order to clear water away, techniques like in loco burning, biodegradant agents, dispersant agents and sorbent materials application are used. The most of the sorbent materials are also synthetic and they are used because it is easy to store them and their availability in market. This dissertation introduces the study of vegetable fibers of pineapple leaf fibers (Ananas comosus (L.) Merr.), cotton fibers (Gossypium herbaceum L.), kapok fibers (Ceiba pentandra (L.) Gaertn.), curauá fibers (Ananas erectifolius L.B. Sm.) and sisal fibers (Agave sisalana Perrine) related to their capacity of sorption of oil in case of accidental spill in the ocean. This work evaluates the substitution possibility of synthetic materials by natural biodegradable materials with less cost
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
The phenomenon of adsorption is of fundamental importance for the treatment of textile effluents and removal of dyes. Chitosan is characterized as an excellent adsorbent material, not only for its adsorption capacity but also the low cost production. Equilibrium and kinetic studies were developed in this study to describe the mechanism of adsorption of the anionic azo dye Orange G in chitosan, with the isotherms obtained from the variation of the concentration of dye in the continuous phase. The kinetics of the process was analyzed based on models involving the adsorption of molecules of the dye in nonpolar and polar sites. Adsorption experiments were carried out in water and in saline media with different NaCl concentrations, both for the determination of the equilibrium time as isotherms for making kinetic curves in which the amount of dye adsorbed measured indirectly varied with time. The experiments revealed the opening of the biopolymer structure with increasing concentration of Orange G, accompanied by high pH values and change on the type of interaction between the dye and the adsorbent surface, suggesting behavior advocated by the Langmuir equation in a certain range of concentration of the adsorbate and following the Henry's Law at higher concentrations, from the increased number of sites available for adsorption. The studies conducted showed that the saline medium reduces the chitosan s adsorption capacity according to a certain concentration, the occurrence of the cooperative adsorption process steps kinetic mechanism suggested as a new alternative for the interpretation of the phenomenon
Resumo:
Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated
Resumo:
Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 °C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 °C). This validates the concept of the sorption of CO2 together with methane steam reforming
Resumo:
Textile activity results in effluents with a variety of dyes. Among the several processes for dye-uptaking from these wastewaters, sorption is one of the most effective methods, chitosan being a very promising alternative for this end. The sorption of Methyl Orange by chitosan crosslinked particles was approached using equilibrium and kinetic analyses at different pH s. Besides the standard pseudo-order analysis normally effectuated (i.e. pseudo-first-order and pseudo-second-order), a novel approach involving a pseudo-nth-order kinetics was used, nbeing determined via non-linear regression, using the Levenberg-Marquardt method. Zeta potential measurements indicated that electrostatic interactions were important for the sorption process. Regarding equilibrium experiments, data were well fitted to a hybrid Langmuir-Freundlich isotherm, and estimated Gibbs free energy of adsorption as a function of mass of dye per area of chitosan showed that the process of adsorption becomes more homogeneous as the pH of the continuous phase decreased. Considering the kinetics of sorption, although a pseudo-nth-order description yielded good fits, a kinetic equation involving diffusion adsorption phenomena was found to be more consistent in terms of a physicochemical description of the sorption process
Resumo:
Many studies on environmental ecosystems quality related to polycyclic aromatic hydrocarbons (PAH) have been carried out routinely due to their ubiquotus presence worldwide and to their potential toxicity after its biotransformation. PAH may be introduced into the environmet by natural and anthropogenic processes from direct runoff and discharges and indirect atmospheric deposition. Sources of naturally occurring PAHs include natural fires, natural oil seepage and recent biological or diagenetic processes. Anthropogenic sources of PAHs, acute or chronic, are combustion of organic matter (petroleum, coal, wood), waste and releases/spills of petroleum and derivatives (river runoff, sewage outfalls, maritime transport, pipelines). Besides the co-existence of multiples sources of PAH in the environmental samples, these compounds are subject to many processes that lead to geochemical fates (physical-chemical transformation, biodegradation and photo-oxidation), which leads to an alteration of their composition. All these facts make the identification of the hydrocarbons sources, if petrogenic, pyrolytic or natural, a challenge. One of the objectives of this study is to establish tools to identify the origin of hydrocarbons in environmental samples. PAH diagnostic ratios and PAH principal component analysis were tested on a critical area: Guanabara Bay sediments. Guanabara Bay is located in a complex urban area of Rio de Janeiro with a high anthropogenic influence, being an endpoint of chronic pollution from the Greater Rio and it was the scenario of an acute event of oil release in January 2000. It were quantified 38 compounds, parental and alkylated PAH, in 21 sediment samples collected in two surveys: 2000 and 2003. The PAH levels varied from 400 to 58439 ng g-1. Both tested techniques for origin identification of hydrocarbons have shown their applicability, being able to discriminate the PAH sources for the majority of the samples analysed. The bay sediments were separated into two big clusters: sediments with a clear pattern of petrogenic introduction of hydrocarbons (from intertidal area) and sediments with combustion characteristics (from subtidal region). Only a minority of the samples could not display a clear contribution of petrogenic or pyrolytic input. The diagnostic ratios that have exhibited high ability to distinguish combustion- and petroleum-derived PAH inputs for Guanabara Bay sediments were Phenanthrene+Anthracene/(Phenanthrene+Anthracene+C1Phenanthrene); Fluorantene/(Fluorantene+Pyrene); Σ (other 3-6 ring PAHs)/ Σ (5 alkylated PAH series). The PCA results prooved to be a useful tool for PAH source identification in the environment, corroborating the diagnostic indexes. In relation to the temporal evaluation carried out in this study, it was not verified significant changes on the class of predominant source of the samples. This result indicates that the hydrocarbons present in the Guanabara Bay sediments are mainly related to the long-term anthropogenic input and not directly related to acute events such as the oil spill of January 2000. This findings were similar to various international estuarine sites. Finally, this work had a complementary objective of evaluating the level of hydrocarbons exposure of the aquatic organisms of Guanabara Bay. It was a preliminary study in which a quantification of 12 individual biliar metabolites of PAH was performed in four demersal fish representing three different families. The analysed metabolites were 1-hydroxynaphtalene, 2-hidroxinaphtalene, 1hydroxyphenanthrene, 9-hydroxyphenanthrene, 2-hydroxyphenanthrene, 1hydroxypyrene, 3-hidroxibiphenil, 3- hydroxyphenanthrene, 1-hydroxychrysene, 9hydroxyfluorene, 4-hydroxyphenanthrene, 3-hydroxybenz(a)pyrene. The metabolites concentrations were found to be high, ranging from 13 to 177 µg g-1, however they were similar to worldwide regions under high anthropogenic input. Besides the metabolites established by the used protocol, it was possible to verified high concentrations of three other compounds not yet reported in the literature. They were related to pyrolytic PAH contribution to Guanabara Bay aquatic biota: 1-hydroxypyrine and 3-hydroxybenz(a)pyrine isomers
Resumo:
Biodegradable microspheres used as controlled release systems are important in pharmaceutics. Chitosan biopolymer represents an attractive biomaterial alternative because of its physicochemical and biological characteristics. Chitosan microspheres are expected to become promising carrier systems for drug and vaccine delivery, especially for non-invasive ways oral, mucosal and transdermal routes. Controlling the swelling rate and swelling capacity of the hydrogel and improving the fragile nature of microspheres under acidic conditions are the key challenges that need to be overcomed in order to enable the exploration of the full pharmaceutical potential use of these microparticles. Many studies have focused on the modification of chitosan microsphere structures with cross-linkers, various polymers blends and new organic-inorganic hybrid systems in order to obtain improved properties. In this work, microspheres made of chitosan and nanosized hydrophobic silica (Aerosil R972) were produced by a method consisting of two steps. First, a preparation of a macroscopically homogeneous chitosan-hydrophobic silica dispersion was prepared followed by spray drying. FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to characterize the microspheres. Also, the were conducted acid stability, moisture sorption capacity, release properties and biological assays. The chitosan-hydrophobic silica composite microspheres showed improved thermal degradation, lower water affinity, better acid stability and ability to retard rifampicin and propranolol hydrochloride (drug models) release under simulated physiological conditions. In vitro biocompatibility studies indicated low cytotoxicity and low capacity to activate cell production of the pro-inflammatory mediator nitric oxide. The results show here encourage further studies on the use of the new chitosan-hydrophobic silica composite microspheres as drug carrier systems via oral or nasal routes.
Resumo:
Searches using organoclays have been the subject of great interest due to its wide application in industry and removal of environmental pollutants. The organoclays were obtained using bentonite (BEN) and cationic surfactants: hexadecyltrimethyl ammonium bromide (HDTMA-Br) and trimethyloctadecyl ammonium bromide (TMOA-Br) in ratios of 50 and 100 % of its ion exchange capacity. The materials were characterized by the techniques of X-ray diffraction (DRX), infrared spectroscopy (IR), X-ray fluorescence (FRX), thermal analysis (TA) and scanning electron microscopy (SEM). The bentonite and organobentonite were used on the adsorption of dyes, Remazol Blue RR (AZ) and Remazol Red RR (VM) in aqueous solution. The adsorption models of Langmuir and Freundlich were used for mathematical description of sorption equilibrium data and obtain the constants of the isotherms. The Freundlich model fit to the data for adsorption equilibrium of bentonite, on the other hand both the model fit to the Langmuir adsorption test of organoclays. The adsorption processes using adsorbents with both dyes interspersed with HDTMA-Br show endothermic and exothermic nature, respectively.
Resumo:
The infection caused by Helicobacter pylori (H. pylori) is associated with gastroduodenal inflammation can lead to the development of gastritis, gastric or duodenal ulcer and gastric cancer (type 1 carcinogen for stomach cancer). Amoxicillin is used as first-line therapy in the treatment of H. pylori associated to metronidazole or clarithromycin, and a proton pump inhibitor. However, the scheme is not fully effective due to inadequate accumulation of antibiotics in gastric tissue, inadequate efficacy of ecological niche of H. pylori, and other factors. In this context, this study aimed to obtaining and characterization of particulate systems gastrorretentivos chitosan - amoxicillin aiming its use for treatment of H. pylori infections. The particles were obtained by the coacervation method / precipitation using sodium sulfate as precipitating agent and crosslinking and two techniques: addition of amoxicillin during preparation in a single step and the sorption particles prior to amoxycillin prepared by coacervation / precipitation and spray drying. The physicochemical characterization of the particles was performed by SEM, FTIR, DSC, TG and XRD. The in vitro release profile of amoxycillin free and incorporated in the particles was obtained in 0.1 N HCl (pH = 1.2). The particles have higher encapsulation efficiency to 80% spherical shape with interconnected particles or adhered to each other, the nanometric diameter to the systems obtained by coacervation / precipitation and fine for the particles obtained by spray drying. The characterization by FTIR, DSC and XRD showed that the drug was incorporated into the nanoparticles dispersed in the polymeric matrix. Thermal analysis (TG and DSC) indicated that encapsulation provides greater heat stability to the drug. Amoxicillin encapsulated in nanoparticles had slower release compared to free drug. The particles showed release profile with a faster initial stage (burst effect) reaching a maximum at 30 minutes 35% of amoxicillin for the system in 1: 1 ratio relative to the polymer and 80% for the system in the ratio 2: 1. Although simple and provide high encapsulation efficiency of amoxicillin, the process of coacervation, precipitation in one step using sodium sulfate as precipitant / cross-linker must be optimized in order to adjust the release kinetics according to the intended application.