2 resultados para PARVALBUMIN-POSITIVE NEURONS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autism comprises a heterogeneous group of neurodevelopmental disorders that affects the brain maturation and produces sensorial, motor, language and social interaction deficits in early childhood. Several studies have shown a major involvement of genetic factors leading to a predisposition to autism, which are possibly affected by environmental modulators during embryonic and post-natal life. Recent studies in animal models indicate that alterations in epigenetic control during development can generate neuronal maturation disturbances and produce a hyper-excitable circuit, resulting in typical symptoms of autism. In the animal model of autism induced by valproic acid (VPA) during rat pregnancy, behavioral, electrophysiological and cellular alterations have been reported which can also be observed in patients with autism. However, only a few studies have correlated behavioral alterations with the supposed neuronal hyper-excitability in this model. The aim of this project was to generate an animal model of autism by pre-natal exposure to VPA and evaluate the early post-natal development and pre-puberal (PND30) behavior in the offspring. Furthermore, we quantified the parvalbumin-positive neuronal distribution in the medial prefrontal cortex and Purkinje cells in the cerebellum of VPA animals. Our results show that VPA treatment induced developmental alterations, which were observed in behavioral changes as compared to vehicle-treated controls. VPA animals showed clear behavioral abnormalities such as hyperlocomotion, prolonged stereotipies and reduced social interaction with an unfamiliar mate. Cellular quantification revealed a decrease in the number of parvalbumin-positive interneurons in the anterior cingulate cortex and in the prelimbic cortex of the mPFC, suggesting an excitatory/inhibitory unbalance in this animal model of autism. Moreover, we also observed that the neuronal reduction occurred mainly in the cortical layers II/III and V/VI. We did not detect any change in the density of Purkinje neurons in the Crus I region of the cerebellar cortex. Together, our results strengthens the face validity of the VPA model in rats and shed light on specific changes in the inhibitory circuitry of the prefrontal cortex in this autism model. Further studies should address the challenges to clarify particular electrophysiological correlates of the cellular alterations in order to better understand the behavioral dysfunctions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cerebral cortex of mammals is histologically organized into different layers of excitatory neurons that have distinct patterns of connections with cortical or subcortical targets. During development, these cortical layers are established through an intricate combination of neuronal specification and migration in a radial pattern known as "insideout": deep-layer neurons are generated prior to upper-layer neurons. In the last few decades, several genes encoding transcription factors involved in the sequential specification of neurons destined to different cortical layers have been identified. However, the influence of early-generated neurons in the specification of subsequent neuronal cohorts remains unclear. To investigate this possible influence, we induced the selective death of cortical neurons from layer V and VI before the generation of layer II, III and IV neurons. Thus, we can evaluate the effects of ablation of early born neurons on the phenotype of late born neurons. Our data shows that one-day after ablation, layer VI neurons expressing the transcription factor TBR1 are newly generated while virtually no neuron expressing TBR1 was generated in the same age in control animals. This suggests that progenitors involved in the generation of neurons destined for superficial layers suffer interference from the selective death of neurons in deep layers, changing their specification. We also observed that while TBR1-positive neurons are located exclusively in deep cortical layers of control animals, many TBR1-positive neurons are misplaced in superficial layers of ablated animals, suggesting that the migration of cortical neurons could be controlled independently of neuronal phenotypes. Furthermore, we observed an increase in layer V neurons expressing CTIP2 and neurons expressing SATB2 and that these cells have changed their distributions. As a conclusion, our data indicate the existence of a mechanism of control exercised by the early-generated neurons in the cerebral cortex on the fate of the progenitors involved in the generation of the following cortical neurons. This mechanism could help to control the number of neurons in different layers and contribute to the establishment of different cortical areas