3 resultados para Optimum-path forests

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following the study of Andrade et al. (2009) on regular square lattices, here we investigate the problem of optimal path cracks (OPC) in Complex Networks. In this problem we associate to each site a determined energy. The optimum path is defined as the one among all possible paths that crosses the system which has the minimum cost, namely the sum of the energies along the path. Once the optimum path is determined, at each step, one blocks its site with highest energy, and then a new optimal path is calculated. This procedure is repeated until there is a set of blocked sites forming a macroscopic fracture which connects the opposite sides of the system. The method is applied to a lattice of size L and the density of removed sites is computed. As observed in the work by Andrade et al. (2009), the fractured system studied here also presents different behaviors depending on the level of disorder, namely weak, moderated and strong disorder intensities. In the regime of weak and moderated disorder, while the density of removed sites in the system does not depend of the size L in the case of regular lattices, in the regime of high disorder the density becomes substantially dependent on L. We did the same type of study for Complex Networks. In this case, each new site is connected with m previous ones. As in the previous work, we observe that the density of removed sites presents a similar behavior. Moreover, a new result is obtained, i.e., we analyze the dependency of the disorder with the attachment parameter m

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present essay shows strategies of improvement in a well succeded evolutionary metaheuristic to solve the Asymmetric Traveling Salesman Problem. Such steps consist in a Memetic Algorithm projected mainly to this problem. Basically this improvement applied optimizing techniques known as Path-Relinking and Vocabulary Building. Furthermore, this last one has being used in two different ways, in order to evaluate the effects of the improvement on the evolutionary metaheuristic. These methods were implemented in C++ code and the experiments were done under instances at TSPLIB library, being possible to observe that the procedures purposed reached success on the tests done