10 resultados para OSCILLATORY CONTRACTIONS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SCHEFFZUK, C. , KUKUSHKA, V. , VYSSOTSKI, A. L. , DRAGUHN, A. , TORT, A. B. L. , BRANKACK, J. . Global slowing of network oscillations in mouse neocortex by diazepam. Neuropharmacology , v. 65, p. 123-133, 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides comprise a complex group of macromolecules with a range of several biological activities, including antiviral activity, anticoagulant, antiproliferative, antiherpética, antitumor, anti-inflammatory and antioxidant. These anionic polymers are widely distributed in tissues of vertebrates, invertebrates and algae. Seaweeds are the most abundant sources of sulfated polysaccharides in nature. The green algal sulfated polysaccharides are homo or heteropolysaccharides comprised of galactose, glucose, arabinose and/or glucuronic acid. They are described as anticoagulant, anti-inflammatory, antiviral, anti-angiogenic, antitumor compounds. However, there are few studies about elucidation and evaluation of biological/pharmacological effects of sulfated polysaccharides obtained from green algae, for example, there is only one paper reporting the antinociceptive activity of sulfated polysaccharides of these algae. Therefore this study aimed to obtain sulfated polysaccharides of green seaweed Codium isthmocladum and evaluates them as potential antinociceptive agents. Thus, in this study, the total extract of polysaccharides of green alga C. isthmocladum was obtained by proteolytic digestion, followed by fractionation resulting in five fractions (F0.3, F0.5, F0.7, F0.9 and F1.2) by sequential precipitation with acetone. Using the test of abdominal contractions we observed that the fraction F0.9 was the most potent antinociceptive aompound. F0.9 consists mainly of a sulfated heterogalactana. More specific tests showed that Fo.9 effect is dose and time dependent, reaching a maximum at 90 after administration (10 mg / kg of animal). F0.9 is associated with TRPV1 and TRPA1 receptors and inhibits painful sensation in animals. Furthermore, F0.9 inhibits the migration of lymphocytes induced peritonitis test. On the other hand, stimulates the release of NO and TNF-α. These results suggest that F0.9 has the potential to be used as a source of sulfated galactan antinociceptive and anti-inflammatory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an analysis of the control law based on an indirect hybrid scheme using neural network, initially proposed for O. Adetona, S. Sathanathan and L. H. Keel. Implementations of this control law, for a level plant of second order, was resulted an oscillatory behavior, even if the neural identifier has converged. Such results had motivated the investigation of the applicability of that law. Starting from that, had been made stability mathematical analysis and several implementations, with simulated plants and with real plants, for analyze the problem. The analysis has been showed the law was designed being despised some components of dynamic of the plant to be controlled. Thus, for plants that these components have a significant influence in its dynamic, the law tends to fail

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the effect of different resting periods, after induced muscle fatigue, in the quadriceps femoris neuromuscular performance, in healthy subjects. Methods: Sixty-four volunteers, of both genders, with an average of 21,8 ± 1,7 years and mean body mass index of 24,2 ± 3,7 Kg/m2 were randomly assigned into 4 groups: control group (was not induced fatigue); Experimental Group 1 (Exp. 1 1 minute of rest after fatigue); Experimental Group 3 (Exp. 3 3 minutes of rest after fatigue) and Experimental Group 5 (Exp. 5 5 minutes of rest after fatigue). The subjects were evaluated to the knee´s joint position sense (JPS), followed by 5 flexion-extension knee concentric isokinetic contractions at 60°/s, with concomitant recording of median frequency (Fmed) of rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM). Then they underwent a muscle fatigue protocol (30 flexion-extension knee concentric contractions at 60°/s) and were reevaluated on the isokinetic performance, Fmed and JPS. Blood lactate levels were measured before initial assessment, immediately after the fatigue protocol and 5 minutes after the end of the rest period. Results: The adoption of 3 minutes of rest was sufficient to restore the initial conditions for the peak torque normalized by body weight and the VL and VM Fmed. The joint position sense returned to its initial values with 1 minute rest. The lactate concentration remained high regardless of the adopted rest period. Conclusion: The use of 3-minute rest period is sufficient for the reestablishment of the neuromuscular parameters to the pre fatigue values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the immediate effects of laser therapy on neuromuscular performance in healthy subjects after a muscle fatigue. This is a clinical trial, controlled, randomized, blinded, attended by 80 volunteers of both genders, healthy, with ages between 18 to 28 years. Initially the volunteers performed an initial evaluation (EV1) using electromyography in the biceps muscle, associated with assessment in isokinetic dynamometry with 5 concentric contractions (60 °/s) for elbow flexion. The subjects were randomly allocated into 4 groups: G1 (control, n = 20), G2 (placebo, n = 20), G3 (pre-fatigue laser, n = 20), and G4 (post fatigue laser, n = 20). The muscular fatigue protocol had 30 concentric isokinetic contractions (120 °/s). We used a 808 nm laser, power of 100 mW, applied at the belly of the biceps muscle. After the speeches the volunteers performed a final evaluation (EV2). Test was applied to two-way ANOVA with post hoc Turkey, with a significance level of 5%. There was no significant difference in electromyographic evaluation. In dynamometric evaluation showed a drop in peak torque, peak torque normalized to body weight (p <0.001) and average power (p <0, 05) between the initial and final evaluations in control. Among the groups there was a significant difference between the control and the other groups in relation to peak torque (p <0.05), peak torque to body weight (p <0.001) and average power (p <0.05). Therefore, the low intensity laser therapy does not alter the immediate neuromuscular performance after fatigue

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processing in the visual system starts in the retina. Its complex network of cells with different properties enables for parallel encoding and transmission of visual information to the lateral geniculate nucleus (LGN) and to the cortex. In the retina, it has been shown that responses are often accompanied by fast synchronous oscillations (30 - 90 Hz) in a stimulus-dependent manner. Studies in the frog, rabbit, cat and monkey, have shown strong oscillatory responses to large stimuli which probably encode global stimulus properties, such as size and continuity (Neuenschwander and Singer, 1996; Ishikane et al., 2005). Moreover, simultaneous recordings from different levels in the visual system have demonstrated that the oscillatory patterning of retinal ganglion cell responses are transmitted to the cortex via the LGN (Castelo-Branco et al., 1998). Overall these results suggest that feedforward synchronous oscillations contribute to visual encoding. In the present study on the LGN of the anesthetized cat, we further investigate the role of retinal oscillations in visual processing by applying complex stimuli, such as natural visual scenes, light spots of varying size and contrast, and flickering checkerboards. This is a necessary step for understanding encoding mechanisms in more naturalistic conditions, as currently most data on retinal oscillations have been limited to simple, flashed and stationary stimuli. Correlation analysis of spiking responses confirmed previous results showing that oscillatory responses in the retina (observed here from the LGN responses) largely depend on the size and stationarity of the stimulus. For natural scenes (gray-level and binary movies) oscillations appeared only for brief moments probably when receptive fields were dominated by large continuous, flat-contrast surfaces. Moreover, oscillatory responses to a circle stimulus could be broken with an annular mask indicating that synchronization arises from relatively local interactions among populations of activated cells in the retina. A surprising finding in this study was that retinal oscillations are highly dependent on halothane anesthesia levels. In the absence of halothane, oscillatory activity vanished independent of the characteristics of the stimuli. The same results were obtained for isoflurane, which has similar pharmacological properties. These new and unexpected findings question whether feedfoward oscillations in the early visual system are simply due to an imbalance between excitation and inhibition in the retinal networks generated by the halogenated anesthetics. Further studies in awake behaving animals are necessary to extend these conclusions