15 resultados para Numerical results
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)
Resumo:
The main purpose of this work was the development of ceramic dielectric substrates of bismuth niobate (BiNbO4) doped with vanadium pentoxide (V2O5), with high permittivity, used in the construction of microstrip patch antennas with applications in wireless communications systems. The high electrical permittivity of the ceramic substrate provided a reduction of the antenna dimensions. The numerical results obtained in the simulations and the measurements performed with the microstrip patch antennas showed good agreement. These antennas can be used in wireless communication systems in various frequency bands. Results were satisfactory for antennas operating at frequencies in the S band, in the range between 2.5 GHz and 3.0 GHz.
Resumo:
In general, the materials used as substrates in the project of microstrip antennas are: isotropic, anisotropic dielectrics and ferrimagnetic materials (magnetic anisotropy). The use of ferrimagnetic materials as substrates in microstrip patch antennas has been concentrated on the analysis of antennas with circular and rectangular patches. However, a new class of materials, called metamaterials, has been currently the focus of a great deal of interest. These materials exhibit bianisotropic characteristics, with permittivity and permeability tensors. The main objective of this work is to develop a theoretical and numerical analysis for the radiation characteristics of annular ring microstrip antennas, using ferrites and metamaterials as substrates. The full wave analysis is performed in the Hankel transform domain through the application of the Hertz vector potentials. Considering the definition of the Hertz potentials and imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency, radiation pattern, return loss, and antenna bandwidth as a function of the annular ring physical parameters, for different configurations and substrates. The theoretical analysis was developed for annular ring microstrip antennas on a double ferrimagnetic/isotropic dielectric substrate or metamaterial/isotropic dielectric substrate. Also, the analysis for annular ring microstrip antennas on a single ferrimagnetic or metamaterial layer and for suspended antennas can be performed as particular cases
Resumo:
This work presents a theoretical and numerical analysis using the transverse resonance technique (TRT) and a proposed MTRT applied in the analysis of the dispersive characteristics of microstrip lines built on truncated isotropic and anisotropic dielectric substrates. The TRT uses the transmission lines model in the transversal section of the structure, allowing to analyze its dispersive behavior. The difference between TRT and MTRT consists basically of the resonance direction. While in the TRT the resonance is calculated in the same direction of the metallic strip normal axis, the MTRT considers the resonance in the metallic strip parallel plane. Although the application of the MTRT results in a more complex equivalent circuit, its use allows some added characterization, like longitudinal section electric mode (LSE) and longitudinal section magnetic mode (LSM), microstrips with truncated substrate, or structures with different dielectric regions. A computer program using TRT and MTRT proposed in this work is implemented for the characterization of microstrips on truncated isotropic and anisotropic substrates. In this analysis, propagating and evanescent modes are considered. Thus, it is possible to characterize both the dominant and higher order modes of the structure. Numerical results are presented for the effective permittivity, characteristic impedance and relative phase velocity for microstrip lines with different parameters and dimensions of the dielectric substrate. Agreement with the results obtained in the literature are shown, as well as experimental results. In some cases, the convergence analysis is also performed by considering the limiting conditions, like particular cases of isotropic materials or structures with dielectric of infinite size found in the literature. The numerical convergence of the formulation is also analyzed. Finally, conclusions and suggestions for the continuity of this work are presented
Resumo:
This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented
Resumo:
This work consists in the development of a theoretical and numerical analysis for frequency selective surfaces (FSS) structures with conducting patch elements, such as rectangular patches, thin dipoles and cross dipoles, on anisotropic dielectric substrates. The analysis is developed for millimeter wave band applications. The analytical formulation is developed in the spectral domain, by using a rigorous technique known as equivalent transmission line method, or immitance approach. The numerical analysis is completed through the use of the Galerkin's technique in the Fourier transform domain, using entire-domain basis functions. In the last decades, several sophisticated analytical techniques have been developed for FSS structure applications. Within these applications, it can be emphasized the use of FSS structures on reflecting antennas and bandpass radomes. In the analysis, the scattered fields of the FSS geometry are related to the surface induced currents on the conducting patches. After the formulation of the scattering problem, the numerical solution is obtained by using the moment method. The choice of the basis functions plays a very important role in the numerical efficiency of the numerical method, once they should provide a very good approximation to the real current distributions on the FSS analyzed structure. Thereafter, the dyadic Green's function components are obtained in order to evaluate the basis functions unknown coefficients. To accomplish that, the Galerkin's numerical technique is used. Completing the formulation, the incident fields are determined through the incident potential, and as a consequence the FSS transmission and reflection characteristics are determined, as function of the resonant frequency and structural parameters. The main objective of this work was to analyze FSS structures with conducting patch elements, such as thin dipoles, cross dipoles and rectangular patches, on anisotropic dielectric substrates, for high frequency applications. Therefore, numerical results for the FSS structure main characteristics were obtained in the millimeter wave bando Some of these FSS characteristics are the resonant
Resumo:
This work presents a theoretical and numerical analysis of Frequency Selective Surfaces (FSS) with elements as rectangular patch, thin dipole and crossed dipole mounted on uniaxial anisotropic dielectric substrate layers for orientations of the optical axis along x, y and z directions. The analysis of these structures is accomplished by combination of the Hertz vector potentials method and the Galerkin's technique, in the Fourier transform-domain, using entire¬domain basis functions. This study consists in the use of one more technique for analysis of FSS on anisotropic dielectric substrate. And presents as the main contribution the introduction of one more project parameter to determinate the transmission and reflection characteristics of periodic structures, from the use of anisotropic dielectric with orientations of the crystal optical axis along x, y and z directions. To validate this analysis, the numerical results of this work are compared to those obtained by other authors, for FSS structures on anisotropic and isotropic dielectric substrates. Also are compared experimental results and the numerical correspondent ones for the FSS isotropic case. The technique proposed in this work is accurate and efficient. ln a second moment, curves are presented for the transmission and reflection characteristics of the FSS structures using conducting patch elements mounted on uniaxial anisotropic dielectric substrate layers with optical axis oriented along x, y and z directions. From analysis of these curves, the performance of the considered FSS structures as function of the optical axis orientation is described
Resumo:
The present work deals with the ana1ysis of microstrip patch antennas printed on tapered dielectric substrates. We investigate the influence ofthe substrate height variations on the properties of configurations such as microstrip patch antennas, microstrip patch antennas with overlay and suspendeô microstrip patch antennas. The dielectric substrates can be isotropic or anisotropic ones. This accurate analysis is based on the full-wave formulation. It is carried out initially for the determination of the impedance matrix, through the use of the spectral¬domain immitance approach. We use a model based on a segmentation of the considered line into uniform microstrip line subsections. Normalized phase constants and characteristic impedances are obtained by means of the Galerkin numerical technique. Then, the cascaded combination of the uniform microstrip subsections are analyzed through an interactive procedure. Numerical results are presented for the input reflection coefficient, voltage standing wave ratio, resonant frequency, and radiation pattems ofthe E_plane and H-plane diagrams. It is found that the variations in the substrate height profile produce a great influence on the bandwidth of microstrip antennas. This procedure gives bandwidth improvements without altering considerably the resonant frequency. Furthermore, the tapered microstrip antenna can be used as a lightweight altemative for bandwidth control and to eXtend the use of microstiip antenna technology to a wider variety of applications. Finally, suggestions for the continuity of this work are presented
Resumo:
This work presents a theoretical and numerical analysis of structures using frequency selective surfaces applied on patch antennas. The FDTD method is used to determine the time domain reflected fields. Applications of frequency selective surfaces and patch antennas cover a wide area of telecommunications, especially mobile communications, filters and WB antennas. scattering parameters are obteained from Fourier Transformer of transmited and reflected fields in time domain. The PML are used as absorbing boundary condition, allowing the determination of the fields with a small interference of reflections from discretized limit space. Rectangular patches are considered on dielectric layer and fed by microstrip line. Frequency selective surfaces with periodic and quasi-periodic structures are analyzed on both sides of antenna. A literature review of the use of frequency selective surfaces in patch antennas are also performed. Numerical results are also compared with measured results for return loss of analyzed structures. It is also presented suggestions of continuity to this work
Resumo:
Wavelet coding is an efficient technique to overcome the multipath fading effects, which are characterized by fluctuations in the intensity of the transmitted signals over wireless channels. Since the wavelet symbols are non-equiprobable, modulation schemes play a significant role in the overall performance of wavelet systems. Thus the development of an efficient design method is crucial to obtain modulation schemes suitable for wavelet systems, principally when these systems employ wavelet encoding matrixes of great dimensions. In this work, it is proposed a design methodology to obtain sub-optimum modulation schemes for wavelet systems over Rayleigh fading channels. In this context, novels signal constellations and quantization schemes are obtained via genetic algorithm and mathematical tools. Numerical results obtained from simulations show that the wavelet-coded systems derived here have very good performance characteristics over fading channels
Resumo:
The aim of this work is to characterize and use the characteristic parameters of the planar structures constructed with fin lines looking for their applications in devices, using PBG Photonic Band Gap photonic materials as substrate, operating in the millimeter and optic wave bands.The PBG theory will be applied for the relative permittivity attainment for the PBG photonic substrate s and p polarizations. The parameters considered in the structures characterization are the complex propagation constant and the characteristic impedance of unilateral and bilateral fin lines that were obtained by the use of the TTL Transverse Transmission Line Method, together with the Method of the Moments. The final part of this work comprises studies related to the behavior of the asymmetric unilateral fin line coupler with photonic substrate. This research opens perspectives for new works in this modern area. Numerical results are shown by means of bi-dimensional and three-dimensional graphics. Conclusions and suggestions for future works are also presented
Resumo:
Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.
Resumo:
This work presents a theoretical and numerical analysis for the radiation characteristics of rectangular microstrip antenna using metamaterial substrate. The full wave analysis is performed in the Fourier transform domain through the application of the Transverse Transmission Line - TTL method. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. The general equations for the electromagnetic fields of the antenna are developed using the Transverse Transmission Line - TTL method. Imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency and return loss for different configurations and substrates