3 resultados para Numerical linear algebra
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities
Resumo:
This work presents the positional nonlinear geometric formulation for trusses using different strain measures. The positional formulation presents an alternative approach for nonlinear problems. This formulation considers nodal positions as variables of the nonlinear system instead of displacements (widely found in literature). The work also describes the arc-length method used for tracing equilibrium paths with snap-through and snap-back. Numerical applications for trusses already established in the literature and comparisons with other studies are provided to prove the accuracy of the proposed formulation
Resumo:
One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities