7 resultados para Nonlinear system modeling
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Due to major progress of communication system in the last decades, need for more precise characterization of used components. The S-parameters modeling has been used to characterization, simulation and test of communication system. However, limitation of S-parameters to model nonlinear system has created new modeling systems that include the nonlinear characteristics. The polyharmonic distortion modeling is a characterizationg technique for nonlinear systems that has been growing up due to praticity and similarity with S-parameters. This work presents analysis the polyharmonic distortion modeling, the test bench development for simulation of planar structure and planar structure characterization with X-parameters
Resumo:
This work presents the positional nonlinear geometric formulation for trusses using different strain measures. The positional formulation presents an alternative approach for nonlinear problems. This formulation considers nodal positions as variables of the nonlinear system instead of displacements (widely found in literature). The work also describes the arc-length method used for tracing equilibrium paths with snap-through and snap-back. Numerical applications for trusses already established in the literature and comparisons with other studies are provided to prove the accuracy of the proposed formulation
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
This work describes the development of a nonlinear control strategy for an electro-hydraulic actuated system. The system to be controlled is represented by a third order ordinary differential equation subject to a dead-zone input. The control strategy is based on a nonlinear control scheme, combined with an artificial intelligence algorithm, namely, the method of feedback linearization and an artificial neural network. It is shown that, when such a hard nonlinearity and modeling inaccuracies are considered, the nonlinear technique alone is not enough to ensure a good performance of the controller. Therefore, a compensation strategy based on artificial neural networks, which have been notoriously used in systems that require the simulation of the process of human inference, is used. The multilayer perceptron network and the radial basis functions network as well are adopted and mathematically implemented within the control law. On this basis, the compensation ability considering both networks is compared. Furthermore, the application of new intelligent control strategies for nonlinear and uncertain mechanical systems are proposed, showing that the combination of a nonlinear control methodology and artificial neural networks improves the overall control system performance. Numerical results are presented to demonstrate the efficacy of the proposed control system
Resumo:
This dissertation aims the development of an experimental device to determine quantitatively the content of benzene, toluene and xylenes (BTX) in the atmosphere. BTX are extremely volatile solvents, and therefore play an important role in atmospheric chemistry, being precursors in the tropospheric ozone formation. In this work a BTX new standard gas was produced in nitrogen for stagnant systems. The aim of this dissertation is to develop a new method, simple and cheaper, to quantify and monitor BTX in air using solid phase microextraction/ gas chromatography/mass spectrometry (SPME/CG/MS). The features of the calibration method proposed are presented in this dissertation. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fiber exposed for 10 min standard gas mixtures. It is observed that the main parameters that affect the extraction process are sampling time and concentration. The results of the BTX multicomponent system studied have shown a linear and a nonlinear range. In the non-linear range, it is remarkable the effect of competition by selective adsorption with the following affinity order p-xylene > toluene > benzene. This behavior represents a limitation of the method, however being in accordance with the literature. Furthermore, this behavior does not prevent the application of the technique out of the non-linear region to quantify the BTX contents in the atmosphere.