5 resultados para Nonlattice self-similar fractal strings
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The study of the elementary excitations such as photons, phonons, plasmons, polaritons, polarons, excitons and magnons, in crystalline solids and nanostructures systems are nowdays important active field for research works in solid state physics as well as in statistical physics. With this aim in mind, this work has two distinct parts. In the first one, we investigate the propagation of excitons polaritons in nanostructured periodic and quasiperiodic multilayers, from the description of the behavior for bulk and surface modes in their individual constituents. Through analytical, as well as computational numerical calculation, we obtain the spectra for both surface and bulk exciton-polaritons modes in the superstructures. Besides, we investigate also how the quasiperiodicity modifies the band structure related to the periodic case, stressing their amazing self-similar behavior leaving to their fractal/multifractal aspects. Afterwards, we present our results related to the so-called photonic crystals, the eletromagnetic analogue of the electronic crystalline structure. We consider periodic and quasiperiodic structures, in which one of their component presents a negative refractive index. This unusual optic characteristic is obtained when the electric permissivity and the magnetic permeability µ are both negatives for the same range of angular frequency ω of the incident wave. The given curves show how the transmission of the photon waves is modified, with a striking self-similar profile. Moreover, we analyze the modification of the usual Planck´s thermal spectrum when we use a quasiperiodic fotonic superlattice as a filter.
Resumo:
This work is a detailed study of self-similar models for the expansion of extragalactic radio sources. A review is made of the definitions of AGN, the unified model is discussed and the main characteristics of double radio sources are examined. Three classification schemes are outlined and the self-similar models found in the literature are studied in detail. A self-similar model is proposed that represents a generalization of the models found in the literature. In this model, the area of the head of the jet varies with the size of the jet with a power law with an exponent γ. The atmosphere has a variable density that may or may not be spherically symmetric and it is taken into account the time variation of the cinematic luminosity of the jet according to a power law with an exponent h. It is possible to show that models Type I, II and III are particular cases of the general model and one also discusses the evolution of the sources radio luminosity. One compares the evolutionary curves of the general model with the particular cases and with the observational data in a P-D diagram. The results show that the model allows a better agreement with the observations depending on the appropriate choice of the model parameters.
Resumo:
Double radio sources have been studied since the discovery of extragalactic radio sources in the decade of 1930. Since then, several numerical studies and analytical models have been proposed seeking a better understanding of the physical phenomena that determines the origin and evolution of such objects. In this thesis, we intended to study the evolution problem of the double radio sources in two fronts: in the ¯rst we have developed an analytical self-similar model that represents a generalization of most models found in the literature and solve some existent problems related to the jet head evolution. We deal with this problem using samples of hot spot sizes to ¯nd a power law relation between the jet head dimension and the source length. Using our model, we were able to draw the evolution curves of the double sources in a PD diagram for both compact sources (GPS and CSS) and extended sources of the 3CR catalogue. We have alson developed a computation tool that allows us to generate synthetic radio maps of the double sources. The objective is to determine the principal physical parameters of those objects by comparing synthetic and observed radio maps. In the second front, we used numeric simulations to study the interaction of the extra- galactic jets with the environment. We simulated situations where the jet propagates in a medium with high density contrast gas clouds capable to block the jet forward motion, forming the distorted structures observed in the morphology of real sources. We have also analyzed the situation in which the jet changes its propagation direction due to a change of the source main axis, creating the X-shaped sources. The comparison between our simulations and the real double radio sources, enable us to determine the values of the main physical parameters responsible for the distortions observed in those objects
Resumo:
In this thesis, we investigated the magnonic and photonic structures that exhibit the so-called deterministic disorder. Speci cally, we studied the effects of the quasiperiodicity, associated with an internal structural symmetry, called mirror symmetry, on the spectra of photonics and magnonics multilayer. The quasiperiodicity is introduced when stacked layers following the so-called substitutional sequences. The three sequences used here were the Fibonacci sequence, Thue-Morse and double-period, all with mirror symmetry. Aiming to study the propagation of light waves in multilayer photonic, and spin waves propagation in multilayer magnonic, we use a theoretical model based on transfer matrix treatment. For the propagation of light waves, we present numerical results that show that the quasiperiodicity associated with a mirror symmetry greatly increases the intensity of transmission and the transmission spectra exhibit a pro le self-similar. The return map plotted for this system show that the presence of internal symmetry does not alter the pattern of Fibonacci maps when compared with the case without symmetry. But when comparing the maps of Thue-Morse and double-time sequences with their case without the symmetry mirror, is evident the change in the pro le of the maps. For magnetic multilayers, we work with two di erent systems, multilayer composed of a metamagnetic material and a non-magnetic material, and multilayers composed of two cubic Heisenberg ferromagnets. In the rst case, our calculations are carried out in the magnetostatic regime and calculate the dispersion relation of spin waves for the metamgnetic material considered FeBr2. We show the e ect of mirror symmetry in the spectra of spin waves, and made the analysis of the location of bulk bands and the scaling laws between the full width of the bands allowed and the number of layers of unit cell. Finally, we calculate the transmission spectra of spin waves in quasiperiodic multilayers consisting of Heisenberg ferromagnets. The transmission spectra exhibit self-similar patterns, with regions of scaling well-de ned in frequency and the return maps indicates only dependence of the particular sequence used in the construction of the multilayer
Resumo:
In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.