14 resultados para Modelos Log-lineares

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A modelagem de processos industriais tem auxiliado na produção e minimização de custos, permitindo a previsão dos comportamentos futuros do sistema, supervisão de processos e projeto de controladores. Ao observar os benefícios proporcionados pela modelagem, objetiva-se primeiramente, nesta dissertação, apresentar uma metodologia de identificação de modelos não-lineares com estrutura NARX, a partir da implementação de algoritmos combinados de detecção de estrutura e estimação de parâmetros. Inicialmente, será ressaltada a importância da identificação de sistemas na otimização de processos industriais, especificamente a escolha do modelo para representar adequadamente as dinâmicas do sistema. Em seguida, será apresentada uma breve revisão das etapas que compõem a identificação de sistemas. Na sequência, serão apresentados os métodos fundamentais para detecção de estrutura (Modificado Gram- Schmidt) e estimação de parâmetros (Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Estendido) de modelos. No trabalho será também realizada, através dos algoritmos implementados, a identificação de dois processos industriais distintos representados por uma planta de nível didática, que possibilita o controle de nível e vazão, e uma planta de processamento primário de petróleo simulada, que tem como objetivo representar um tratamento primário do petróleo que ocorre em plataformas petrolíferas. A dissertação é finalizada com uma avaliação dos desempenhos dos modelos obtidos, quando comparados com o sistema. A partir desta avaliação, será possível observar se os modelos identificados são capazes de representar as características estáticas e dinâmicas dos sistemas apresentados nesta dissertação

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis used four different methods in order to diagnose the precipitation extremes on Northeastern Brazil (NEB): Generalized Linear Model s via logistic regression and Poisson, extreme value theory analysis via generalized extre me value (GEV) and generalized Pareto (GPD) distributions and Vectorial Generalized Linea r Models via GEV (MVLG GEV). The logistic regression and Poisson models were used to identify the interactions between the precipitation extremes and other variables based on the odds ratios and relative risks. It was found that the outgoing longwave radiation was the indicator variable for the occurrence of extreme precipitation on eastern, northern and semi arid NEB, and the relative humidity was verified on southern NEB. The GEV and GPD distribut ions (based on the 95th percentile) showed that the location and scale parameters were presented the maximum on the eastern and northern coast NEB, the GEV verified a maximum core on western of Pernambuco influenced by weather systems and topography. The GEV and GPD shape parameter, for most regions the data fitted by Weibull negative an d Beta distributions (ξ < 0) , respectively. The levels and return periods of GEV (GPD) on north ern Maranhão (centerrn of Bahia) may occur at least an extreme precipitation event excee ding over of 160.9 mm /day (192.3 mm / day) on next 30 years. The MVLG GEV model found tha t the zonal and meridional wind components, evaporation and Atlantic and Pacific se a surface temperature boost the precipitation extremes. The GEV parameters show the following results: a) location ( ), the highest value was 88.26 ± 6.42 mm on northern Maran hão; b) scale ( σ ), most regions showed positive values, except on southern of Maranhão; an d c) shape ( ξ ), most of the selected regions were adjusted by the Weibull negative distr ibution ( ξ < 0 ). The southern Maranhão and southern Bahia have greater accuracy. The level period, it was estimated that the centern of Bahia may occur at least an extreme precipitatio n event equal to or exceeding over 571.2 mm/day on next 30 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Nile tilapia, Oreochromis niloticus, is an important omnivorous fish in the reservoirs of the semi-arid region of Brazil. Throughout its growth tilapia s feeding behavior changes from a visual predator of zooplankton to a filter-feeder, collecting suspended particulate matter, including planktonic organisms, through pumping. This feature results in different impacts of tilapia on plankton community as the fish grows. Aiming to quantify the functional response of different sizes of Nile tilapia on zooplankton experiments in microcosms scale in the laboratory and in mesocosm scale in the field were carried out. The data were fitted to four different models of functional response. The best fits were obtained for nonlinear models in laboratory experiments. While the experiments in mesocosms were the best settings for responses of type I (juvenile and adult tilapia) and type III (fry). The Manly's alpha index was used to evaluate the feeding selectivity of tilapia on the three main groups of the zooplankton in the experiments in mesocosms. The results show that: (i) rotifers were the preferred prey of fingerlings,(ii) copepods were rejected by fry and juvenile tilapia and (iii) adult fish fed non-selectively on copepods, cladocerans and rotifers. The functional response models obtained in this research can be applied to population models and help in modeling the dynamics of interactions between Nile tilapia and the planktonic communities in the reservoirs of the semi-arid

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The predictive control technique has gotten, on the last years, greater number of adepts in reason of the easiness of adjustment of its parameters, of the exceeding of its concepts for multi-input/multi-output (MIMO) systems, of nonlinear models of processes could be linearised around a operating point, so can clearly be used in the controller, and mainly, as being the only methodology that can take into consideration, during the project of the controller, the limitations of the control signals and output of the process. The time varying weighting generalized predictive control (TGPC), studied in this work, is one more an alternative to the several existing predictive controls, characterizing itself as an modification of the generalized predictive control (GPC), where it is used a reference model, calculated in accordance with parameters of project previously established by the designer, and the application of a new function criterion, that when minimized offers the best parameters to the controller. It is used technique of the genetic algorithms to minimize of the function criterion proposed and searches to demonstrate the robustness of the TGPC through the application of performance, stability and robustness criterions. To compare achieves results of the TGPC controller, the GCP and proportional, integral and derivative (PID) controllers are used, where whole the techniques applied to stable, unstable and of non-minimum phase plants. The simulated examples become fulfilled with the use of MATLAB tool. It is verified that, the alterations implemented in TGPC, allow the evidence of the efficiency of this algorithm

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho propõe um ambiente computacional aplicado ao ensino de sistemas de controle, denominado de ModSym. O software implementa uma interface gráfica para a modelagem de sistemas físicos lineares e mostra, passo a passo, o processamento necessário à obtenção de modelos matemáticos para esses sistemas. Um sistema físico pode ser representado, no software, de três formas diferentes. O sistema pode ser representado por um diagrama gráfico a partir de elementos dos domínios elétrico, mecânico translacional, mecânico rotacional e hidráulico. Pode também ser representado a partir de grafos de ligação ou de diagramas de fluxo de sinal. Uma vez representado o sistema, o ModSym possibilita o cálculo de funções de transferência do sistema na forma simbólica, utilizando a regra de Mason. O software calcula também funções de transferência na forma numérica e funções de sensibilidade paramétrica. O trabalho propõe ainda um algoritmo para obter o diagrama de fluxo de sinal de um sistema físico baseado no seu grafo de ligação. Este algoritmo e a metodologia de análise de sistemas conhecida por Network Method permitiram a utilização da regra de Mason no cálculo de funções de transferência dos sistemas modelados no software

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJETIVO: analisar o impacto da fibromialgia sobre os sinais e sintomas climatéricos, qualidade de vida, função sexual em mulheres na fase do climatério. MÉTODOS: Foi realizado estudo observacional analítico de corte transversal, envolvendo 161 mulheres na fase do climatério. As participantes foram divididas em dois grupos: grupo sem fibromialgia (83) e grupo com fibromialgia (78). As variáveis investigadas foram: Qualidade de vida medida através do questionário UQOL (Utian Quality of Life), Função sexual analisada através do questionário Quociente Sexual - versão feminina (QS-F) e sinais e sintomas climatéricos avaliados pelo Índice menopausal de Blatt & Kupperman (IMBK). No estudo estatístico, foi realizada análise inferencial através do método de modelos lineares generalizados. Para análise do UQOL e seus domínios assim como o QS-F e IMBK, foi utilizado uma função de ligação linear de Log Poisson com exposição de contrastes para os níveis dos fatores de exposição. O nível de significância adotado foi de 5%. RESULTADOS: No grupo fibromialgia foram observados escores significativamente inferiores para o domínio ocupacional UQOL (p 0,01) e UQOL total (p = 0,02), em comparação ao grupo sem fibromialgia. O grupo de mulheres com fibromialgia apresentou escores superiores em relação à intensidade dos sinais e sintomas climatéricos (p ˂0,01) e escores inferiores na avaliação da função sexual pelo QS-F (p = 0,01), quando comparado ao grupo sem fibromialgia. As mulheres mais jovens, com trabalhos extra domicílio, maior renda e maior grau de escolaridade apresentaram melhores escores na qualidade de vida em todos os domínios. Quanto aos sinais e sintomas climatéricos, a renda mais alta e maior tempo de escolaridade exerceram associação direta com sinais e sintomas mais leves, entretanto, quanto mais jovens, maior relação com sintomatologia mais intensa. Em relação à função sexual, melhores escores estiveram associados com idade entre 45 a 49 anos e trabalho extra domicílio. CONCLUSÃO: Os resultados obtidos no presente estudo permitem concluir que o diagnóstico de fibromialgia na fase do climatério apresentase como influência negativa no domínio ocupação da qualidade de vida, sinais e sintomas climatéricos e função sexual, sendo esta associação influenciada significativamente por diversos fatores sócio demográficos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)