3 resultados para Minimum alveolar concentration
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this dissertation, the theoretical principles governing the molecular modeling were applied for electronic characterization of oligopeptide α3 and its variants (5Q, 7Q)-α3, as well as in the quantum description of the interaction of the aminoglycoside hygromycin B and the 30S subunit of bacterial ribosome. In the first study, the linear and neutral dipeptides which make up the mentioned oligopeptides were modeled and then optimized for a structure of lower potential energy and appropriate dihedral angles. In this case, three subsequent geometric optimization processes, based on classical Newtonian theory, the semi-empirical and density functional theory (DFT), explore the energy landscape of each dipeptide during the search of ideal minimum energy structures. Finally, great conformers were described about its electrostatic potential, ionization energy (amino acids), and frontier molecular orbitals and hopping term. From the hopping terms described in this study, it was possible in subsequent studies to characterize the charge transport propertie of these peptides models. It envisioned a new biosensor technology capable of diagnosing amyloid diseases, related to an accumulation of misshapen proteins, based on the conductivity displayed by proteins of the patient. In a second step of this dissertation, a study carried out by quantum molecular modeling of the interaction energy of an antibiotic ribosomal aminoglicosídico on your receiver. It is known that the hygromycin B (hygB) is an aminoglycoside antibiotic that affects ribosomal translocation by direct interaction with the small subunit of the bacterial ribosome (30S), specifically with nucleotides in helix 44 of the 16S ribosomal RNA (16S rRNA). Due to strong electrostatic character of this connection, it was proposed an energetic investigation of the binding mechanism of this complex using different values of dielectric constants (ε = 0, 4, 10, 20 and 40), which have been widely used to study the electrostatic properties of biomolecules. For this, increasing radii centered on the hygB centroid were measured from the 30S-hygB crystal structure (1HNZ.pdb), and only the individual interaction energy of each enclosed nucleotide was determined for quantum calculations using molecular fractionation with conjugate caps (MFCC) strategy. It was noticed that the dielectric constants underestimated the energies of individual interactions, allowing the convergence state is achieved quickly. But only for ε = 40, the total binding energy of drug-receptor interaction is stabilized at r = 18A, which provided an appropriate binding pocket because it encompassed the main residues that interact more strongly with the hygB - C1403, C1404, G1405, A1493, G1494, U1495, U1498 and C1496. Thus, the dielectric constant ≈ 40 is ideal for the treatment of systems with many electrical charges. By comparing the individual binding energies of 16S rRNA nucleotides with the experimental tests that determine the minimum inhibitory concentration (MIC) of hygB, it is believed that those residues with high binding values generated bacterial resistance to the drug when mutated. With the same reasoning, since those with low interaction energy do not influence effectively the affinity of the hygB in its binding site, there is no loss of effectiveness if they were replaced.
Resumo:
Natural oils have shown a scientific importance due to its pharmacological activity and renewable character. The copaiba (Copaifera langsdorffii) and Bullfrog (Rana catesbeiana Shaw) oils are used in folk medicine particularly because the anti-inflammatory and antimicrobial activities. Emulsion could be eligible systems to improve the palatability and fragrance, enhance the pharmacological activities and reduce the toxicological effects of these oils. The aim of this work was to investigate the antimicrobial activity of emulsions based on copaiba (resin-oil and essential-oil) and bullfrog oils against fungi and bacteria which cause skin diseases. Firstly, the essential oil was extracted from copaiba oil-resin and the oils were characterized by gas chromatography coupled to a mass spectrometry (GC-MS). Secondly, emulsion systems were produced. A microbiological screening test with all products was performed followed (the minimum inhibitory concentration, the bioautography method and the antibiofilm determination). Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Candida albicans, C. parapsilosis, C. glabrata, C. krusei and C. tropicalis American Type Culture Collection (ATCC) and clinical samples were used. The emulsions based on copaiba oil-resin and essential oil improved the antimicrobial activity of the pure oils, especially against Staphylococcus e Candida resistant to azoles. The bullfrog oil emulsion and the pure bullfrog oil showed a lower effect on the microorganisms when compared to the copaiba samples. All the emulsions showed a significant antibiofilm activity by inhibiting the cell adhesion. Thus, it may be concluded that emulsions based on copaiba and bullfrog oils are promising candidates to treatment of fungal and bacterial skin infections
Resumo:
Helicobacter pylori is a spiral, Gram negative, mobile, and microaerophilic bacteria recognized as a major cause of gastritis, ulcer, gastric cancer, and gastric low grade, B cell, mucosa – associated lymphoid tissue (MALT) lymphoma, constituting an important microorganism in medical microbiology. Its importance comes from the difficulty of treatment because the requirement of multiple drugs use, besides the increasing emergence of resistant and multiresistant strains to antibiotics used in th e clinic. In order to expand safe and effective therapeutic options , chemical studies on medicinal plants by obtaining extracts, fractions, isolated compounds or essential oils with some biological activity has been intensified . Given the above, the objective was to evaluate the inhi bitory activity of organic extracts derived from Syzygium cumini and Encholirium spectabile, with antiulcer history, and the essential oil, obtained from S. cumini, against H. pylori (ATCC 43504) by the disk diffusion method, for qualitative evaluation, an d determination of minimum inhibitory concentration (MIC) using the broth microdilution method, for quantitative analysis. Also was evaluated the extracts in vitro toxicity by a hemolytic assay using sheep red blood cells, and VERO and HeLa cells using the MTT assay to analyze cell viability. The extracts of both plant used in antimicrobial assays did not inhibit bacterial growth, however the essential oil of S. cumini (SCFO) proved effective, showing MIC value of 205 μg/mL (0.024 % dilution of the original oil). In the hemolytic assay, the same oil shows moderate toxicity, by promote 25% hemolysis at 1000 μg/mL. Regarding the cytotoxicity in cell culture, the SCFO, at 260 μg/mL, affected the cell viability around 80% of HeLa and 50% of VERO cells. So the oi l obtained from S. cumini leaves has antimicrobial activity against H. pylori and cytotoxicity potential, suggesting a source of new molecule drug candidates, since new stages of toxicity in vitro and in vivo, as well, chemical characterization be evaluate d. Moreover, the development of a prospective drug delivery system can result in a prototype to be used in preclinical tests.