143 resultados para Metais tóxicos

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the waste generated during the drilling of oil wells are gravel which are impregnated of drilling fluid. This residue consists of highly toxic chemicals, including toxic metals. This study suggests an alternative process to the treatment of this waste, by incorporating it the form of raw material in the ceramic matrix , and by solidification and stabilize the metals present, Aluminum (Al), Iron (Fe), Manganese (Mn) and Zinc (Zn). The raw materials were characterized by the techniques of X ray fluorescence (FRX), X ray diffraction (DRX), laser granulometry (GL), thermogravimetry (TG) and differential thermal analysis (ADT). To evaluate the percentage of gravel effect the environmental and technological properties were obtained from formulations containing 0, 10 and 20 % by weight of gravel in the ceramic matrix. After sintering at temperatures 1080, 1120 and 1160 °C, the samples were tested for water absorption, the linear shrinkage firing, voltage of rupture and solubility. The results obtained showed that the stabilization by solidification, is a viable alternative to safe disposal of waste drilling. Ceramics products can be used in the manufacture of solid bricks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bioleaching of chalcopyrite has not been applied on a commercial scale due to the low process efficiency, so this process has been extensively studied in recent years. The bioleaching of chalcopyrite tailings becomes even more difficult by the presence of higher amounts of impurities, among them are the carbonates. The presence of carbonates in the ore promotes the increase in pH of the solution and may inhibit the development of bioleaching. Therefore, this research aims to apply the acid treatment for optimization of bioleaching process, in order to recover the lost copper throughout the process besides reducing the content of this toxic metal in the tailings pond. The removal and recovery of toxic metals is very important in protecting the environment and human health. The bioleaching experiments were performed in two stages, the first made up using the pre-treated tailing with sulfuric acid in bioleaching, and the second was made using the tailing without treatment with sulfuric acid addition at the beginning of bioleaching. The acid treatment was carried out in bioreactors with three different volumes of H2SO4 96% and a control experiment. All bioleaching experiments were performed in triplicate over a control, without addition of inoculum. The results showed that acid treatment was effective in removal of carbonates and managed to promote a good performance in the bioleaching of chalcopyrite in both steps studied, it is demonstrated that circa 47% copper recovery can be achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bioleaching of chalcopyrite has not been applied on a commercial scale due to the low process efficiency, so this process has been extensively studied in recent years. The bioleaching of chalcopyrite tailings becomes even more difficult by the presence of higher amounts of impurities, among them are the carbonates. The presence of carbonates in the ore promotes the increase in pH of the solution and may inhibit the development of bioleaching. Therefore, this research aims to apply the acid treatment for optimization of bioleaching process, in order to recover the lost copper throughout the process besides reducing the content of this toxic metal in the tailings pond. The removal and recovery of toxic metals is very important in protecting the environment and human health. The bioleaching experiments were performed in two stages, the first made up using the pre-treated tailing with sulfuric acid in bioleaching, and the second was made using the tailing without treatment with sulfuric acid addition at the beginning of bioleaching. The acid treatment was carried out in bioreactors with three different volumes of H2SO4 96% and a control experiment. All bioleaching experiments were performed in triplicate over a control, without addition of inoculum. The results showed that acid treatment was effective in removal of carbonates and managed to promote a good performance in the bioleaching of chalcopyrite in both steps studied, it is demonstrated that circa 47% copper recovery can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many species have specialized to live in the most varied existing environments showing the remarkable adaptability of the microbial world the most diverse physicochemical conditions. Environments exposed to natural radiation and metals are scarce around the world, presenting a microbiota still unknown. With a total number estimated between 4 and 6 x 1030 microrganisms on earth, they constitute an enormous biological and genetic pool to be explored. Metagenomic approach independent of cultivation, provides a new form to access to the potential genomic environmental samples becoming a powerful tool for the elucidation of ecological functions, metabolic profiles, as well as to identify new biomolecules. In this context, the genetic material of environmental soil and water samples from Açude Boqueirao Parelhas-RN, under the influence of natural radiation and the presence of metals, was extracted, pirosequencing and the generated sequences were analyzed by bioinformatics programs (MG-RAST and STAMP). Taxonomic comparative profiles of both samples showed high abundance of Domain Bacteria, followed by a small portion attributable to Eucaryota Domains, Archaea and Viruses. Proteobacteria, Actinobacteria and Bacterioidetes phyla showed the greater dominance in both samples. Important genera and species associated with resistance to various stressors found in region were observed. Sequences related to oxidative and heat stress, DNA replication and repair, and resistance to toxic compounds were observed, suggesting a significant relationship between the microbiota and their metabolic profile, influenced by regional environmental variables. The results of this study add valuable and unpublished data on the composition of microbial communities in these regions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy metals are present in industrial waste. These metals can generate a large environmental impact contaminating water, soil and plants. The chemical action of heavy metals has attracted environmental interest. In this context, this study aimed to test t he performance of electrochemical technologies for removing and quantifying heavy metals. First ly , the electroanalytical technique of stripping voltammetry with glassy carbon electrode (GC) was standardized in order to use this method for the quantificatio n of metals during their removal by electrocoagulation process (EC). A nalytical curves were evaluated to obtain reliability of the determin ation and quantification of Cd 2+ and Pb 2+ separately or in a mixture. Meanwhile , EC process was developed using an el ectrochemical cell in a continuous flow (EFC) for removing Pb 2+ and Cd 2+ . The se experiments were performed using Al parallel plates with 10 cm of diameter (  63.5 cm 2 ) . The optimization of conditions for removing Pb 2+ and Cd 2+ , dissolved in 2 L of solution at 151 L h - 1 , were studied by applying different values of current for 30 min. Cd 2+ and Pb 2+ concentrations were monitored during electrolysis using stripping voltammetry. The results showed that the removal of Pb 2 + was effective when the EC pro cess is used, obtaining removals of 98% in 30 min. This behavior is dependent on the applied current, which implies an increase in power consumption. From the results also verified that the stripping voltammetry technique is quite reliable deter mining Pb 2+ concentration , when compared with the measurements obtained by atomic absorption method (AA). In view of this, t he second objective of this study was to evaluate the removal of Cd 2+ and Pb 2+ (mixture solution) by EC . Removal efficiency increasing current was confirmed when 93% and 100% of Cd 2+ and Pb 2+ was removed after 30 min . The increase in the current promotes the oxidation of sacrificial electrodes, and consequently increased amount of coagulant, which influences the removal of heavy metals in solution. Adsortive voltammetry is a fast, reliable, economical and simple way to determine Cd 2+ and Pb 2+ during their removal. I t is more economical than those normally used, which require the use of toxic and expensive reagents. Our results demonstrated the potential use of electroanalytical techniques to monitor the course of environmental interventions. Thus, the application of the two techniques associated can be a reliable way to monitor environmental impacts due to the pollution of aquatic ecosystems by heavy metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern with the environment has lead to an increase in the research for new adsorption techniques, low cost adsorvent materials and with high availability. Many works search the development of higher selectivity modified adsorvents. The Brazil has the second world reserve of oiled shale, because of it, the use of that reject is of great interest. This study has the goal of characterize and analyze the retorted shale, reject of the pirobetuminous shale pyrolysis, and the retorted shale modified through the humid impregnation method, wich the precursors were the metals nitrates ( Cobalt, Nickel and Copper), to the usage has adsorvent materials. The samples were characterized chemically, textually and structurally by the X ray fluorescence (XRF), BET, X ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The impregnated samples showed a reduction in the superficial area and in the pore volume when compared with the retorted shale. Besides that, diffractions referred to the impregnated metals where observed in the XRD analysis, wich were the same metals detected in the XRF and SEM analysis. The materials showed homogeneity in it s composition. The results shows that the materials presents adequate adsorption characteristics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acceleration of industrial growth in recent decades on all continents aroused the interest of the companies to counter the impacts produced on the environment, spurred primarily by major disasters in the petroleum industry. In this context, the water produced is responsible for the largest volume of effluent from the production and extraction of oil and natural gas. This effluent has in its composition some critical components such as inorganic salts, heavy metals (Fe, Cu, Zn, Pb, Cd, ), presence of oil and chemicals added in the various production processes. In response to impact, have been triggered by research alternative adsorbent materials for water treatment and water produced, in order to removing oils and acids and heavy metals. Many surveys of diatomaceous earth (diatomite) in Brazil involve studies on the physico-chemical, mineral deposits, extraction, processing and applications. The official estimated Jazi are around 2.5 million tonnes, the main located in the states of Bahia (44%) and Rio Grande do Norte (37,4%). Moreover, these two states appear as large offshore producers, earning a prominent role in research of adsorbents such as diatomite for treatment of water produced. Its main applications are as an agent of filtration, adsorption of oils and greases, industrial load and thermal insulator. The objective of this work was the processing and characterization of diatomite diatomaceous earth obtained from the municipality of Macaíba-RN (known locally as tabatinga) as a low cost regenerative adsorbent for removal of heavy metals in the application of water produced treatment. In this work we adopted a methodology for batch processing, practiced by small businesses located in producing regions of Brazil. The characterization was made by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Research conducted showed that the improvement process used was effective for small volume production of diatomite concentrated. The diatomite obtained was treated by calcination at temperature of 900 oC for 2 hours, with and without fluxing Na2CO3 (4%), according to optimal results in the literature. Column adsorption experiments were conducted to percolation of the in nature, calcined and calcined fluxing diatomites. Effluent was used as a saline solution containing ions of Cu, Zn, Na, Ca and Mg simulating the composition of produced waters in the state of Rio Grande do Norte, Brazil. The breakthrough curves for simultaneous removal of copper ions and zinc as a result, 84.3% for calcined diatomite and diatomite with 97.3 % for fluxing. The calcined fluxing diatomite was more efficient permeability through the bed and removal of copper and zinc ions. The fresh diatomite had trouble with the permeability through the bed under the conditions tested, compared with the other obtained diatomite. The results are presented as promising for application in the petroleum industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project describes a methodology optimization that would allow for a more efficient microwave assisted digestion process for petroleum samples. With the possible chance to vary various factors at once to see if any one factor was significant enough in the answers, experimental planning was used. Microwave assisted digestion allows, through the application of potency, an increasing number of collisions between the HNO3 and H2O2 molecules, favoring sample opening for complex matrixes. For this, a 24 factorial experimental planning was used, varying potency, time and the volumes for HNO3 65% and H2O2 30%. To achieve the desired answers, several elements were monitored (C, Cu, Cr, Fe, Ni, Zn and V) through Inductively coupled plasma atomic emission spectroscopy (ICP-OES). With this initial study it was noticed that the HNO3 was not a significant factor for any of the statistical studies for any of the analytes and the other 3 factors and their interactions showed statistical significance. A Box Behnken experimental planning was used taking in consideration 3 factors: H2O2 volume, time (min) and Potency (W), Nitric Acid kept at 4mL for a mass of 0,1g of petroleum. The results were extremely satisfying showing higher efficiency in the digestion process and taking in a responsibility between the answers for each analyte and the carbon monitoring was achieved in the following conditions: 7mL of H2O2, 700 Watts of potency and a reaction time of 7 minutes with 4mL de HNO3 for a mass of 0,1g of petroleum. The optimized digestion process was applied to four different petroleum samples and the analytes determined by ICP-OES

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removing microcontaminants from effluents is a challenge today, because of its high cost and low efficiency, especially in the treatment of effluents containing heavy metals. An alternative that has emerged is the use of biodegradable nanocomposites, which exhibit good removal and recovery performances, in addition to its low cost. With this in mind, the present study aimed to develop and characterize a nanocomposite based on hydroxyapatite (HAP), polyurethane (PU) and polyvinyl alcohol (PVA) for removing heavy metals. Thus, the research was conducted in several steps: i)- Physico-chemical and microbiological hospital effluent characterization; ii)- Production of hydroxyapatite by aqueous precipitation technique, and their characterization; iii)- Production of the nanocomposite in which the hydroxyapatite was added to the polyurethane prepolymers and then the polyvinyl alcohol/hydroxyapatite film was produced; iv)- Polyvinyl composite without film PU/HAp was also produced in the proportions of 20 and 40% HAp; v)- The composites was characterized by the techniques of XRD, FTIR, SEM / EDS, BET, Zeta Potential and TGA; vi)- The sisal and coconut fibres were washed and dried for comparative tests of adsorption; vii)- Adsorption tests for evaluating the removal of heavy metals (nickel and cadmium). Initial screening adsorption capacity (HAp; PU/HAp - 20 and 40%; PU / HAp / PVA), kinetic studies of adsorption of Cd (II) by HAp; multifactorial design analysis (factorial design) for identifying the most important variables in the adsorption of Cd (II) by composite PU/HAp. Also comparative analysis of adsorption of Cd and Ni by composite PU/HAp were conducted, as well as comparative tests of adsorption of Cd (coconut fibre) and Ni (sisal fibre). It was possible to verify that the composite PU/HAp 40% showed better effectiveness for the removal of Cd (II) and Ni (II), above 80%, equivalent to the lignocellulosic fibre used and HAp produced. As main conclusion, it can be referred that the composite PU/HAp 40% is an effective adsorvent to wastewater treatment for heavy metal removal, with low cost and high efficiency