6 resultados para Mathematical morphology theories

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work present a interval approach to deal with images with that contain uncertainties, as well, as treating these uncertainties through morphologic operations. Had been presented two intervals models. For the first, is introduced an algebraic space with three values, that was constructed based in the tri-valorada logic of Lukasiewiecz. With this algebraic structure, the theory of the interval binary images, that extends the classic binary model with the inclusion of the uncertainty information, was introduced. The same one can be applied to represent certain binary images with uncertainty in pixels, that it was originated, for example, during the process of the acquisition of the image. The lattice structure of these images, allow the definition of the morphologic operators, where the uncertainties are treated locally. The second model, extend the classic model to the images in gray levels, where the functions that represent these images are mapping in a finite set of interval values. The algebraic structure belong the complete lattices class, what also it allow the definition of the elementary operators of the mathematical morphology, dilation and erosion for this images. Thus, it is established a interval theory applied to the mathematical morphology to deal with problems of uncertainties in images

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a new technique for phasor estimation applied in microprocessor numerical relays for distance protection of transmission lines, based on the recursive least squares method and called least squares modified random walking. The phasor estimation methods have compromised their performance, mainly due to the DC exponential decaying component present in fault currents. In order to reduce the influence of the DC component, a Morphological Filter (FM) was added to the method of least squares and previously applied to the process of phasor estimation. The presented method is implemented in MATLABr and its performance is compared to one-cycle Fourier technique and conventional phasor estimation, which was also based on least squares algorithm. The methods based on least squares technique used for comparison with the proposed method were: forgetting factor recursive, covariance resetting and random walking. The techniques performance analysis were carried out by means of signals synthetic and signals provided of simulations on the Alternative Transient Program (ATP). When compared to other phasor estimation methods, the proposed method showed satisfactory results, when it comes to the estimation speed, the steady state oscillation and the overshoot. Then, the presented method performance was analyzed by means of variations in the fault parameters (resistance, distance, angle of incidence and type of fault). Through this study, the results did not showed significant variations in method performance. Besides, the apparent impedance trajectory and estimated distance of the fault were analysed, and the presented method showed better results in comparison to one-cycle Fourier algorithm

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been an increasing tendency on the use of selective image compression, since several applications make use of digital images and the loss of information in certain regions is not allowed in some cases. However, there are applications in which these images are captured and stored automatically making it impossible to the user to select the regions of interest to be compressed in a lossless manner. A possible solution for this matter would be the automatic selection of these regions, a very difficult problem to solve in general cases. Nevertheless, it is possible to use intelligent techniques to detect these regions in specific cases. This work proposes a selective color image compression method in which regions of interest, previously chosen, are compressed in a lossless manner. This method uses the wavelet transform to decorrelate the pixels of the image, competitive neural network to make a vectorial quantization, mathematical morphology, and Huffman adaptive coding. There are two options for automatic detection in addition to the manual one: a method of texture segmentation, in which the highest frequency texture is selected to be the region of interest, and a new face detection method where the region of the face will be lossless compressed. The results show that both can be successfully used with the compression method, giving the map of the region of interest as an input

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work an algorithm for fault location is proposed. It contains the following functions: fault detection, fault classification and fault location. Mathematical Morphology is used to process currents obtained in the monitored terminals. Unlike Fourier and Wavelet transforms that are usually applied to fault location, the Mathematical Morphology is a non-linear operation that uses only basic operation (sum, subtraction, maximum and minimum). Thus, Mathematical Morphology is computationally very efficient. For detection and classification functions, the Morphological Wavelet was used. On fault location module the Multiresolution Morphological Gradient was used to detect the traveling waves and their polarities. Hence, recorded the arrival in the two first traveling waves incident at the measured terminal and knowing the velocity of propagation, pinpoint the fault location can be estimated. The algorithm was applied in a 440 kV power transmission system, simulated on ATP. Several fault conditions where studied and the following parameters were evaluated: fault location, fault type, fault resistance, fault inception angle, noise level and sampling rate. The results show that the application of Mathematical Morphology in faults location is very promising

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications