12 resultados para Matemática Védica. Matemática e Cultura. Cálculo Mental
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This paper describes a study on the possibilities of teaching Vedic Mathematics for teaching the four operations. For this various literature sources were consulted considering three main aspects. The first of a historical-cultural, in order to gather information about the Mathematics originated from Vedic civilization, which highlight (Plofker, 2009), (Joseph, 1996), (Bishop, 1999), (Katz, 1998), (Almeida , 2009). This sought to emphasize relationships of the development of this culture with the math involved in the book Vedic Mathematics written by Tirthaji and published in 1965. In this respect the work brings notes on the history of mathematics on the development of mathematics in ancient India. The second aspect was related to teaching mathematics through research activities in the classroom, in this sense, I sought a bibliography to assist in the construction of a proposed activity to teach the four operations, based on the sutras of Vedic Mathematics, but within an investigative approach, assisting in the development of mental calculation strongly stimulated by the Vedic Mathematics Sutras. The authors were adopted (Mendes, 2006, 2009a, 2009b), Bridge (2003). The third aspect considered to search for books on teaching Vedic Mathematics, written by other authors, based on the book by Tirthaji. This revealed Vedic Mathematics textbooks adopted in schools and free courses in the UK, USA and India, all based on the book Vedic Mathematics of Tirthaji. From the bibliographical studies were prepared didactic guidelines and suggested activities for the teacher, to assist in teaching the four operations. The educational product, consisting of Chapters 4 and 5, is the body of the dissertation and consists of didactic guidelines and suggestions for activities that aim to contribute to the teachers who teach initial years of elementary school
Resumo:
This research argues about the mathematical knowledge built in the tradition of the cassava flour production, seeking to analyse these mathematical knowledge in the perspective of the categories of time and measure, built and practiced in the flour production, located in Serra do Navio and Calçoene, in Amapá - Brazil. The following work discuss the identification and the description of the mathematics during the production activities of the flour, where is presented elements related to generation and transmission of the traditional knowledge, which is the basis for maintenance of the tradition of the flour, characterizing the research as an Ethnomathematic study. The methodological procedures highlight ethnographical techniques and elements that characterize the participating observation. The results obtained showed us that the flour workers articulate some length, area and volume measure due to own and traditionally acquired systems, which is apprehended and countersigned by other kind of culturally established system; thus they relativism the measures systems and the official calendars. And it lifts as one of the main proposal that the academic mathematics and the tradition establish knowledge make conjunction of the both knowledge, that is important for a possible reflection and application in the construction of a pedagogical practice in mathematical education, trying to establish points of socio-economic and cultural mark
Resumo:
This article refers to a research which tries to historically (re)construct the conceptual development of the Integral and Differential calculus, taking into account its constructing model feature, since the Greeks to Newton. These models were created by the problems that have been proposed by the history and were being modified by the time the new problems were put and the mathematics known advanced. In this perspective, I also show how a number of nature philosophers and mathematicians got involved by this process. Starting with the speculations over scientific and philosophical natures done by the ancient Greeks, it culminates with Newton s work in the 17th century. Moreover, I present and analyze the problems proposed (open questions), models generated (questions answered) as well as the religious, political, economic and social conditions involved. This work is divided into 6 chapters plus the final considerations. Chapter 1 shows how the research came about, given my motivation and experience. I outline the ways I have gone trough to refine the main question and present the subject of and the objectives of the research, ending the chapter showing the theoretical bases by which the research was carried out, naming such bases as Investigation Theoretical Fields (ITF). Chapter 2 presents each one of the theoretical bases, which was introduced in the chapter 1 s end. In this discuss, I try to connect the ITF to the research. The Chapter 3 discusses the methodological choices done considering the theoretical fields considered. So, the Chapters 4, 5 and 6 present the main corpus of the research, i.e., they reconstruct the calculus history under a perspective of model building (questions answered) from the problems given (open questions), analyzing since the ancient Greeks contribution (Chapter 4), pos- Greek, especially, the Romans contribution, Hindus, Arabian, and the contribution on the Medium Age (Chapter 5). I relate the European reborn and the contribution of the philosophers and scientists until culminate with the Newton s work (Chapter 6). In the final considerations, it finally gives an account on my impressions about the development of the research as well as the results reached here. By the end, I plan out a propose of curse of Differential and Integral Calculus, having by basis the last three chapters of the article
Resumo:
El objetivo en esta tesis consistió en estudiar el proceso de los cambios de los conceptos de profesores de la educación infantil y de los años iníciales de la educación básica referente a la enseñanza de la matemática. La investigación se desenvolvió en la escuela Presidente Kennedy, en la ciudad de Natal, en Rio Grande do Norte, teniendo como participante 05 (cinco) profesores del curso normal superior a través de la educación superior del instituto relacionado. El trabajo asocia el programa a él Programa de Pós-Graduação em Educação da Universidade Federal do Rio Grande do Norte, en la base de pesquisa Formação e Profissionalização Docente coordinada de los doctores Betânia Leite Ramalho e Isauro Beltran Núñez. El referencial teórico-metodológico en quien si apoya el trabajo se inserta en la señal conceptual usada por Giordan y de Vecchi (1996), de Carrillo y Contreras (1994), Ramalho; Núñez y Gauthier (2003), Ponte (1998), Guimarães (1988), Ernest (1989). En esta investigación, los conceptos de los profesores habían sido estudiados en el contexto educativo de la formación del nivel superior, usándola reflexiva crítico práctico como estrategia formativa. Estos conceptos se entienden como estructuras subyacentes al pensamiento del profesor. Dado la naturaleza del objeto del estudio, la información, para las intenciones de esta investigación, habían sido cosechados a través de los instrumentos siguientes: cuestionario, plan de la lección, entrevista diaria y del campo. El cuestionario fue constituido de preguntas abiertas y de las entrevistas de la mitad-structuralized. La organización de los datos permitió a La inferencia de los conceptos, usando la técnica de la triangulación de datos. La investigación divulgó que los conceptos de los profesores, a través del proceso formativo, se habían desarrollado de una plataforma para otra, yéndose puesto que los modelos didácticos tradicionales para otros modelos dirigidos a una tendencia didáctica de espontaneísta/investigativa. La reflexión crítica era considerada como elemento catalítico de los cambios de los conceptos de los profesores en la educación de las matemáticas, sin embargo déjenos verifican que estos cambios son difíciles de ocurrir para la naturaleza compleja de estos conceptos. Como facilitadores de los factores de estos cambios, encontramos y el investigativo el trabajo, la dinámica y la naturaleza de las actividades se convirtió en el colaborativo de proceso formativo, entre otros. Como obstáculos a los cambios, identificamos el contexto del trabajo de los profesores, de la cultura de los individualistas prácticos de sus profesores de los colegas, del concepto linear, estático y de los mecánicos de los procesos para enseñar, el conocimiento profesional construído durante la formación inicial, alineación con los modelos didácticos de sus viejos profesores, entre otros
Resumo:
mongst the trends in Mathematics Education, which have as their object a more significant and criticallearning, is the Ethnomathematics. This field of knowledge, still very recent amongst us, besides analyzing an externalist history of the sciences in a search for a relationship between the development of the scientific disciplines and the socio-cultural context, goes beyond this externalism, for it also approaches the intimate relationships betwe_n cognition and culture. In fact, the Ethnomathematics proposes an alternative epistemological approach associated with a wider historiography. It struggles to understand the reality and come to the pedagogical action by means of a cognitive approach with strong cultural basis. But the difficulty of inserting the Ethnomathematics into the educational context is met by resistance from some mathematics educators who seem indifferent to the influence of the culture on the understanding of the mathematics ideas. It was with such concerns in mind that I started this paper that had as object to develop a curricular reorientation pedagogical proposal in mathematics education, at the levei of the 5th grade of the Ensino Fundamental (Elementary School), built from the mathematical knowledge of a vegetable farmers community, 30 km away from the center of Natal/RN, but in accordance with the teaching dimensions of mathematics of the 1 st and 2nd cycles proposed by the Parâmetros Curriculares Nacionais - PCN: Numbers and Operations, Space and Form, Units and Measures, and Information Treatment. To achieve that, I developed pedagogical activities from the mathematical concepts of the vegetable farmers of that community, explained in my dissertation research in the period 2000 through 2002. The pedagogical process was developed from August through Oecember 2007 with 24 students of the 5th Grade of the Ensino Fundamental (Elementary School) of the school of that community. The qualitative analysis of the data was conducted taking into account three categories of students: one made up of students that helped their parents in the work with vegetables. Another one by students whose parents and relatives worked with vegetables, though they did not participate directly of this working process and one third category of students that never worked with vegetables, not to mention their parents, but lived adjacent to that community. From the analyses and results of the data gathered by these three distinct categories of students, I concluded that those students that assisted their parents with the daily work with vegetables solved the problem-situations with understanding, and, sometimes, with enriching contributions to the proposed problems. The other categories of students, in spite of the various field researches to the gardens of that community, before and during the pedagogical activities, did not show the same results as those students/vegetable farmers, but showed interest and motivation in ali activities of the pedagogical process in that period
Resumo:
This work is located at the shield of research that defends the use of Mathematics History, based on the utilization of historical artifacts at teaching activities, at Mathematics classrooms, and at graduation courses for teachers of Elementary School and of the first grades of High School. The general objective is to examine the possibility of the use of historical artifacts, at teaching activities, at graduation courses for teachers of Elementary School and of the first grades of High School. Artifact, at this work, is comprehended as objects, documents, monuments, images and other kinds of materials that make sense to the Human actions at the past and that represent what have been said and done at the Human history. At the construction of the theoretical-methodological way of the research we have based ourselves upon the ideas of the authors that are engaged at the teachers formation; at researchers adherents to the use of Mathematics History (MH) as a methodological resource, and at studies accomplished that elucidate the role of the artifacts at the history and as a mediatory element of learning. We defend the thesis that the utilization of historical artifacts at teaching activities enables the increasing of the knowledge, the development of competencies and essential abilities to the teacher acting, as well as interact at different areas of the knowledge, that provides a conception of formation where the teacher improves his learning, learning-doing and learning-being. We have adopted a qualitative research approach with a theoretical and pratic study disposition about the elements that contribute to the teachers works at the classroom, emphasizing the role of the Mathematics history at the teacher s formation and as a pedagogical resource at the mathematics classroom; the knowledge, the competencies and abilities of the historical artifacts as an integrative link between the different areas of the knowledge. As result, we emphasize that the proposition of using the MH, through learning activities, at the course of teacher graduation is relevant, because it allows the investigation of ideas that originate the knowledge generated at every social context, considering the contribution of the social and cultural, political and economical aspects at this construction, making easy the dialog among the areas and inside of each one The historical artifact represents a research source that can be deciphered, comprehended, questioned, extracting from it information about knowledge of the past, trace and vestiges of the culture when it was created, consisting of a testimony of a period. These aspects grant to it consideration to be explored as a mediatory element of the learning. The artifacts incorporated at teaching activities of the graduation courses for teachers promote changes on the view about the Mathematics teaching, in view of to privilege the active participation of the student at the construction of his knowledge, at the reflection about the action that has been accomplished, promoting stimulus so the teachers can create their own artifacts, and offer, either, traces linking the Mathematics with others knowledge areas.
Resumo:
This study aims to analyze the implications that the knowledge of an important work for the History of Science, De revolutionibus orbium coelestium , by Nicholas Copernicus, can bring for the formation of Mathematics professors. The study focuses on Book I of Copernicus s work, where, in the final part, is found the Table of the Subtense Straight Lines in a Circle, a true sine table constructed by the author. The study considers two theoretical references, the History of Science and of Mathematics, in the professor s formation searched amongst others in Miguel and Miorm, Brito, Neves and Martins, and Radford, and the necessary teaching knowledge professors mst have, on the basis of Gauthier, Schulman and Imbernón amongst others, through which it is established a net of knowledge grouped in dimensions such as mathematical, psycho pedagogical, cultural and practical diversity, that guide the study analysis. In the search for more necessary elements to enrich the analysis, beyond the theoretical research in Book I, it is carried through, with under graduation pupils, future Math professors, the construction of a sine table following the project used in De revolutionibus . The study still makes a description of the life and work of Nicholas Copernicus, detaching the historical context where the author lived and the conceptions about the Universe existing at that time. The research reveals that the studied work is an important source of culture, able to provide to the Mathematics professor in formation, beyond the conceptual and procedural mathematical knowledge, a cultural knowledge that allows him to be opened to the knowledge of other areas that not his specific area, and so to acquire knowledge about the world history, the development of sciences and of the society
Resumo:
The present work had as principal objective to analyze the, 9th grade students understanding about the solutions of an equation of the 2° degree, using geometric processes of the History of the Mathematics. To do so, the research had as base the elaboration and application of a group of teaching activities, based on Jean Piaget's construtivism. The research consisted of a methodological intervention, that has as subjects the students of a group of 9th grade of the State School José Martins de Vasconcelos, located in the municipal district of Mossoró, Rio Grande do Norte. The intervention was divided in three stages: application of an initial evaluation; development of activities‟ module with emphasis in constructive teaching; and the application of the final evaluation. The data presented in the initial evaluation revealed a low level of the students' understanding with relationship to the calculation of areas of rectangles, resolution of equations of the 1st and 2nd degrees, and they were to subsidize the elaboration of the teaching module. The data collected in the initial evaluation were commented and presented under descriptive statistics form. The results of the final evaluation were analyzed under the qualitative point of view, based on Richard Skemp's theory on the understanding of mathematical concepts. The general results showed a qualitative increase with relationship to the students' understanding on the mathematical concepts approached in the intervention. Such results indicate that a methodology using the previous student‟s knowledge and the development of teaching activities, learning in the construtivist theory, make possible an understanding on the part of the students concerning the thematic proposal
Resumo:
La dificultad que los alumnos encuentran en el aprendizaje de matemática viene siendo objeto de investigación por estudiosos en educación matemática, tanto en Brasil como en el exterior. El objetivo de este estudio consiste em investigar las dificuldades en el aprendizado sobre funciones matemáticas y la influencia de las concepciones alternativas a partir de los errores que los candidatos acerca de las cuestiones sobre funciones en la prueba objetiva de matemática del acceso a la universidad de los años de 2001 a 2008. Teniendo como cuestiones de estudio para alcanzar el objetivo propuesto: identificar la relevancia del tema funciones que son contemplados en las pruebas de acceso a la Universidad; asi como cuáles han sido los tipos de funciones más privilegiados y menos privilegiados; analizar si la contextualización de la pregunta y la presencia de elementos no textuales han influenciado en el aumento de tal dificultad; analizar si la representación semiótica agrega mayor exigencia a la pregunta; analizar respecto a la exigencia matemática de la pregunta; analizar lo que se refiere al desempeño de los candidatos para verificar cuál pregunta tuvo mejor desempeño y cuál el peor e identificar los errores más frecuentemente cometidos por los candidatos en esas pruebas. Las reflexiones de los estudiosos como: Radatz (1980), Cury (1994), Socas (1997), Borasi (1997), Franchi e Rincón (2004), Pochulu (2004) presentan las dificultades en el aprendizaje matemático, que aparecen a partir de los errores cometidos por los alumnos, quando estos errores reciben la influencia de las concepciones alternativas. El estudio que se presenta en esta disertación configura un análisis de los errores que los candidatos han cometido en las preguntas objetivas sobre el tema funciones de las pruebas de acceso a la Universidad de los años de 2001 a 2008, a partir de los relatorios de la Comissão Permanente do Vestibular COMPERVE/UFRN. Con la intención de alcanzar los objetivos propuestos para este estudio, fueran sido construidas categorías de análisis. Los resultados encontrados han sido: El tema funciones es el más frecuente entre los demás con (28,1%); el tipo de función priorizada durante esos años ha sido la función logarítmica con (24%); la contextualización de las preguntas exige una mayor comprensión por parte del candidato de lo que las situaciones directas; la caracterización semiótica posee elementos que estructuran esas preguntas que el educando debe saber asociar al texto; la exigencia matemática posibilitó analizar que el procedimiento medio ha sido el más requisitado; el desempeño de los candidatos ha sido en la mayoría bajo (50%); y los principales errores que ellos han cometido han sido de realizar traducciones incorrectas de las expresiones que aparecen en las situaciones-problema; utilizar todos los datos que aparezcan en el problema sin tomar en cuenta si el cálculo realizado responde a la pregunta solicitada; no interpretar coherentemente las informaciones del gráfico; decodificar incorrectamente los valores representados por literales en una recta numérica. Los resultados señalizan la necesidad de una revisión didáctico-metodológicas de la enseñanza de funciones a raíz de las cuales las dificultades en el aprendizaje se han presentado
Resumo:
In this work we are disagreeing with the possibility of production and of the use of video-class for the disciplines of history of mathematics by the teachers of elementary e middle school as a way to contribute to the development of their classes. Our goal is to provide to the mathematics teachers the option of connecting social, scientific, cognitive, and didactic aspects of topics in math thoughts to their students. That shall be based in the presence of mathematics in the history of humanity. Thus, we consider possible that teachers and their students can link and relate mathematics to other sciences, education culture, and reflect about the many ways of represent them, as well as the patters of organization of nature and of culture. In this way, they shall be able to observe and interpret situations that involve mathematical questions associated to the various means of historic-epistemological studies already done by other researchers and scholars in the field of history of mathematics who works in creating video-classes. In addition to that, we can use all the available media in order to give edifying dynamics to the mathematical formulations established throughout history. In this sense, we are based and focused on the objectives, which are sustained by educational computer technology, techniques for video making, as well as mathematical teaching proposals and the historical inquiring made by Mendes (2001, 2009a, 2009b). The validating experimentation allowed us to conclude that the techniques we used in the production of the history of mathematics video-classes proved they to be valid ones. They are able to be executed with the minimum of technological resources. In addition, they have the same efficacy as far as classroom use
Resumo:
This dissertation aims to contribute on teaching of mathematics for enabling learning connected to the relationship among science, society, culture and cognition. To this end, we propose the involvement of our students with social practices found in history, since. Our intention is to create opportunities for school practices that these mathematical arising from professional practice historical, provide strategies for mathematical thinking and reasoning in the search for solutions to problematizations found today. We believe that the propose of producing Basic Problematization Units, or simply UBPs, in math teacher formation, points to an alternative that allows better utilization of the teaching and learning process of mathematics. The proposal has the aim of primary education to be, really forming the citizen, making it critical and society transformative agent. In this sense, we present some recommendations for exploration and use of these units for teachers to use the material investigated by us, in order to complement their teaching work in mathematics lessons. Our teaching recommendations materialized as a product of exploration on the book, Instrumentos nuevos de geometria muy necessários para medir distancia y alturas sem que interuengan numeros como se demuestra em la practica , written by Andrés de Cespedes, published in Madrid, Spain, in 1606. From these problematizations and the mathematics involved in their solutions, some guidelines for didactic use of the book are presented, so that the teacher can rework such problematizations supported on current issues, and thus use them in the classroom
Resumo:
This work aims to study about the importance of cinema for cultural and professional training of teachers of Natural Sciences and Mathematics. The educational potential of cinema is emphasizing by different authors, which also reveal the teachers' training gap in this issue (media). In this study, we defend the audiovisual language of cinema as an integrating element of Arts and Science for cultural and professional training of teachers. This subject has been developed by different authors, in which the emphasis has been the importance of intelligent dialogue with the world. Specifically, the training of science teachers and mathematics, by the approach of Cinema in its formation, It envisions the possibility of minimizing the dichotomy between humanistic and scientific training, already much discussed by some researchers. Educational products contribute to an effective experience and reflection on the cultural and educational role of the Seventh Art. Considering the Cinema as a possible "bridge" between the two cultures (scientific culture and humanistic culture) and promoting ownership of audiovisual language in teacher training It was accomplished the I Exhibition - Cultural Spring: Cinema and Science Education in UFRN. The production of the booklet "Topics of History, Language and Art of Cinema for Science and Mathematics Teachers," and its application in a short course in the XXI National Symposium on Physics Teaching also aimed to contribute to the approximation of Science and Art in training teachers.