2 resultados para Malphigia emarginata

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil, one of the largest agricultural producers in the world, has managed in recent years to significantly improve its production. However, in response to this advance in the agro-industrial sector, the generation of agro-industrial residues has also increased. New technological alternatives have to be implemented in order to bring economic and rational use of this material and drying is one of the possible choices. Considering the great importance that bioactive compounds present for food science and technology, this research aims to evaluate the air-drying process of acerola residue in a tray convective drier under controlled temperature (60, 70 e 80ºC), air velocity (4.0, 5.0 e 6.0 m/s) and material width (0.5, 0.62 e 0.75 cm) by applying an experimental planning 23 + 3. Based on that, the impact on physical-chemical characteristics, color, bioactive compounds concentration and antioxidant activity of dried acerola waste was evaluated, having the in natura and freeze dried waste as control groups. Dried acerola residue presented natural pigments, mainly carotenoids (143.68 - 68.29 mg/g) and anthocyanins (290.92 - 90.11 mg/100 g), which explain the red and yellow instrumental color parameters observed. The acerola residue powder is also rich in phenolic compounds (3261.11 -2692.60 mgGAEeq/100g), proanthocyanidins (61.33-58.46 eq/100g), ascorbic acid (389.44 739.29 mg/100 g) and DPPH antioxidant activity (20.91 24.72 μg Trolox eq/g). Results show decreased concentration of phenolic compounds, anthocyanins, carotenoids, proanthocyanidins and ascorbic acid caused by the air-drying process. However, even after the observed drying losses, the acerola residue powder can be considered a high value food ingredient, considering the high bioactive compounds concentration found in the final product, as well as the colorimetric characterization and microbiological stability of the dried powder

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acerola (Malpighia emarginata D.C.) is a red fruit widely cultivated in Brazil, especially in the Northeastern region. Its increasing demand is attributed to its high ascorbic acid contents. Besides ascorbic acid, widely known by its health-benefit effects, acerola is rich in anthocyanins, which contribute for the antioxidant power of the fruit. Acerola processing produces a bright-red pomace, usually discarded. The further processing of this pomace, in order to explore its antioxidant compounds, could enhance acerola market value and rentability of its processing. Both ascorbic acid and anthocyanins are highly susceptible to degradation, that can be delayed by microencapsulation, which consists on packing particles (core) in an edible matrix (wall material). This work has been made with the purpose of producing a microencapsulated acerola pomace extract, which could be used by the food industry as a functional ingredient with antioxidant and coloring properties. Antioxidant compounds were recovered by pressing the pomace diluted in a solvent (a citric acid aqueous solution), by using a central composite design, with two variables: citric acid concentration in the solvent (0-2%), and solvent: pomace mass ratio (2:1-6:1). The acerola pomace extract was then microencapsulated by spray drying. A central composite design was adopted, with three variables: inlet temperature of the spray dryer (170o-200oC), wall material: acerola solids mass ratio (2:1-5:1), and degree of maltodextrin replacement by cashew tree gum as wall material (0-100%). The cashew tree gum was used because of its similarity to arabic gum, which is regarded as the wall material by excellence. The following conditions were considered as optimal for extraction of anthocyanins and ascorbic acid: solvent/pomace ratio, 5:1, and no citric acid in the solvent. 82.47% of the anthocyanins were recovered, as well as 83.22% of the ascorbic acid. Anthocyanin and ascorbic acid retentions were favored by lower inlet temperatures, higher wall material: acerola solids mass ratio and higher maltodextrin replacement by cashew tree gum, which was presented as a promising wall material. The more adequate microencapsulation conditions, based not only on retention of antioxidant compounds but also on physical properties of the final powder, were the following: inlet temperature, 185oC; wall material: acerola solids mass ratio, 5:1, and minimum degree of maltodextrin replacement by cashew tree gum, 50%