2 resultados para MONOHYDRATE

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithiasis is considered a public health issue due to its high prevalence and rates of recurrence. Objective: To identify risk factors for lithiasis in kidney stone patients from Fortaleza, Brazil. In the first stage of the study, the medical records of 197 patients with urinary lithiasis covering the period 1996 2006 were analyzed with regard to clinical and metabolic data. In the second stage, 340 kidney stones were submitted to morphological examination under 10x magnification. According to the external morphology and the cut surface, the stones were classified as pure or mixed, and major and minor components were identified. In addition, the stone fragments of 25 patients treated with lithotripsy were submitted to morphological analysis. In the third stage, a subsample of 50 stones was used in a double-blind comparison of morphological and chemical findings. Results were expressed as concordant, partly concordant (discordant for minor components) or discordant (discordant for major components). The average age of first symptoms was 35.8±13.3 years, with no significant difference between the genders. The male/female ratio was 1:1.7. Recurrence was reported in 53.3% of cases. The main metabolic changes observed were hypernatriuria (80.7%), hypercalciuria (48.7%), low urine volume (43.7%), hyperoxaluria (30.5%) and hyperuricosuria (17.3%). Pure stones represented 34.7% of the total sample of 340 stones. The most common route of elimination was spontaneous for pure stones (49.1%) and surgical for mixed stones (50.5%). Pure stones consisted most frequently of calcium oxalate (OxCa) (59.3%) and uric acid (UA) (23.7%), the former prevalent in women, the latter prevalent in men. The most frequently observed component in mixed stones was OxCa (67.1%), followed by carbapatite (11.2%) and struvite (7.9%). The main components were OxCa and UA for men, and carbapatite and struvite for women. Nearly half (48%) the 25 analyzed fragments were pure, consisting of calcium oxalate dihydrate (COD) (56%), calcium oxalate monohydrate (COM) (48%), phosphate (32%) and UA (20%). Four patients (16%) had infectious stones. In the chemical analysis of the subsample of 50 stones, the most 64 frequently observed major components were calcium (70%), oxalate (66%), ammonium (56%), urate (28%) and carbonate (24%). In the morphological analysis, the main components were calcium and magnesium phosphate (32%), COM (24%), UA (20%), COD (18%) and cystine (6%). Morphological and chemical findings were totally concordant for 38% of the stones, partly concordant in 52% and discordant in 10%. Conclusion: The risk factors for lithiasis in kidney stone patients from Fortaleza (Brazil) were hyperoxaluria, hypercalciuria with or without hypernatriuria, hyperuricosuria and low urine volume

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitin is the second most abundant polysaccharide in nature and its derivative chitosan has been widely studied due to its unique chemical and pharmacological properties. However, studies show that when this molecule is used as food, drug, etc. it tends to accumulate in renal tissue and promotes an increase in calcium excretion. Nevertheless, the effect of chitosan on the formation of calcium oxalate (OxCa) crystals has never been evaluated. The formation of kidney stones (urolithiasis) is the disease that most often affects the kidneys and the urinary system. In addition, this is a disease with high prevalence and recurrence. Many molecules with antioxidant activity have been shown to decrease the potential for in vitro OxCa crystals formation. Thus, the aim of this study was to evaluate the effect of low molecular weight chitosan and its derivatives conjugated to gallic acid (AG) as antioxidant and inhibitor of OxCa crystals formation. The physico-chemical analysis confirmed the identity of chitosan. This molecule was subjected to five antioxidant tests and showed an excellent copper chelating activity. However, chitosan did not show other significant antioxidant activity. When chitosan was subjected to in vitro crystal formation tests, it increased the number of OxCa monohydrate crystals, modified the morphology of the crystals, modified the proportions between populations of crystals in solution and increased the zeta potential of these crystals formed. Four molecules of chitosan conjugated with GA were obtained. The physico-chemical analysis confirmed that chitosan and AG were covalently bonded. However, the amount of GA liked to chitosan did not increase even when 10 times more GA was used in experiment. When these derivatives were subjected to antioxidant tests, all chitosan conjugates showed higher antioxidant potential than their precursors. However, they showed different activity between them, which indicating that the position where AG is conjugated is an important factor for chitosan-GA activity. When conjugated chitosans were submitted to in vitro crystal formation tests, a reduction in the crystals number was observed when compared with those formed in the presence of unconjugated chitosan. Chitosan has a strong capacity for inducing OxCa monohydrate crystal formation, as well as modify their morphology and zeta potential. Over all, the process of conjugating AG to chitosan led to an increase in antioxidant potential of this molecule and was also able to decrease its capacity of inducing in vitro crystal formation