6 resultados para MATHEMATICIANS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study is to investigate the way through which the relations between Mathematics and Religion emerge in the work of Blaise Pascal. This research is justified by the need to deepen these relations, so far little explored if compared to intersection points between Mathematics and other fields of knowledge. The choice for Pascal is given by the fact that he was one of the mathematicians who elaborated best one reflection in the religious field thus provoking contradictory reactions. As a methodology, it is a bibliographical and documental research with analytical-comparative reading of referential texts, among them the Oeuvres complètes de Pascal (1954), Le fonds pascalien à Clermont-Ferrand (2001), Mathematics in a postmodern age: a cristian perspective by Howell & Bradley (2001), Mathematics and the divine: a historical study by Koetsier & Bergmans (2005), the Anais dos Seminários Nacionais de História da Matemática and the Revista Brasileira de História da Matemática. The research involving Pascal's life as a mathematician and his religious experience was made. A wider background in which the subject matter emerges was also researched. Seven categories connected to the relation between mathematics and religion were identified from the reading of texts written by mathematicians and historians of mathematics. As a conclusion, the presence of four of these seven categories was verified in Pascal's work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is an analysis of Adrien-Marie Legendre s works on Number Theory, with a certain emphasis on his 1830 edition of Theory of Numbers. The role played by these works in their historical context and their influence on the development of Number Theory was investigated. A biographic study of Legendre (1752-1833) was undertaken, in which both his personal relations and his scientific productions were related to certain historical elements of the development of both his homeland, France, and the sciences in general, during the 18th and 19th centuries This study revealed notable characteristics of his personality, as well as his attitudes toward his mathematical contemporaries, especially with regard to his seemingly incessant quarrels with Gauss about the priority of various of their scientific discoveries. This is followed by a systematic study of Lagrange s work on Number Theory, including a comparative reading of certain topics, especially that of his renowned law of quadratic reciprocity, with texts of some of his contemporaries. In this way, the dynamics of the evolution of his thought in relation to his semantics, the organization of his demonstrations and his number theoretical discoveries was delimited. Finally, the impact of Legendre s work on Number Theory on the French mathematical community of the time was investigated. This investigation revealed that he not only made substantial contributions to this branch of Mathematics, but also inspired other mathematicians to advance this science even further. This indeed is a fitting legacy for his Theory of Numbers, the first modern text on Higher Arithmetic, on which he labored half his life, producing various editions. Nevertheless, Legendre also received many posthumous honors, including having his name perpetuated on the Trocadéro face of the Eiffel Tower, which contains a list of 72 eminent scientists, and having a street and an alley in Paris named after him

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article refers to a research which tries to historically (re)construct the conceptual development of the Integral and Differential calculus, taking into account its constructing model feature, since the Greeks to Newton. These models were created by the problems that have been proposed by the history and were being modified by the time the new problems were put and the mathematics known advanced. In this perspective, I also show how a number of nature philosophers and mathematicians got involved by this process. Starting with the speculations over scientific and philosophical natures done by the ancient Greeks, it culminates with Newton s work in the 17th century. Moreover, I present and analyze the problems proposed (open questions), models generated (questions answered) as well as the religious, political, economic and social conditions involved. This work is divided into 6 chapters plus the final considerations. Chapter 1 shows how the research came about, given my motivation and experience. I outline the ways I have gone trough to refine the main question and present the subject of and the objectives of the research, ending the chapter showing the theoretical bases by which the research was carried out, naming such bases as Investigation Theoretical Fields (ITF). Chapter 2 presents each one of the theoretical bases, which was introduced in the chapter 1 s end. In this discuss, I try to connect the ITF to the research. The Chapter 3 discusses the methodological choices done considering the theoretical fields considered. So, the Chapters 4, 5 and 6 present the main corpus of the research, i.e., they reconstruct the calculus history under a perspective of model building (questions answered) from the problems given (open questions), analyzing since the ancient Greeks contribution (Chapter 4), pos- Greek, especially, the Romans contribution, Hindus, Arabian, and the contribution on the Medium Age (Chapter 5). I relate the European reborn and the contribution of the philosophers and scientists until culminate with the Newton s work (Chapter 6). In the final considerations, it finally gives an account on my impressions about the development of the research as well as the results reached here. By the end, I plan out a propose of curse of Differential and Integral Calculus, having by basis the last three chapters of the article

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demonstrations are fundamental instruments for Mathematics and, as such, are frequently used by mathematicians, math teachers and students. In fact, demonstrations are part of every Mathematics teaching environment, because Mathematics considers something true when it can be demonstrated. This is in contrast to other fields of knowledge that employ observation and experimentation to validate truth. This dissertation presents a study of the teaching and learning of demonstrations in Mathematics, describing a Teaching Module applied in a course on the Theory of Numbers offered by the Mathematics Department of the Universidade Federal do Rio Grande do Norte for mathematics majors. The objective of the dissertation was to propose and test a Teaching Module that can serve as a model for teaching demonstrations. The Teaching Module consisted of the following five steps: the application of a survey to determine the students‟ profiles and their previous knowledge of mathematical language and techniques of demonstration; the analysis of a series of dialogues containing arguments in everyday language; the investigation and analysis of the structure of some important techniques of demonstration; a written assessment; and, finally, an interview to further verify the principal results of the Teaching Module. The analysis of the data obtained though the classroom activities, written assessments and interviews led to the conclusion that there was a significant amount of assimilation of the issue at the level of relational understanding, (SKEMP, 1980). These instruments verified that the students attained considerable improvement in their use of mathematical language and of the techniques of demonstration presented. Thus, the evidence supports the conclusion that the proposed Teaching Module is an effective means for the teaching/learning of mathematical demonstration and, as such, provides a methodological guide which may lay the foundations for a new approach to this important subject

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)