9 resultados para Módulo dual de Grothendiek
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
The so-called Dual Mode Adaptive Robust Control (DMARC) is proposed. The DMARC is a control strategy which interpolates the Model Reference Adaptive Control (MRAC) and the Variable Structure Model Reference Adaptive Control (VS-MRAC). The main idea is to incorporate the transient performance advantages of the VS-MRAC controller with the smoothness control signal in steady-state of the MRAC controller. Two basic algorithms are developed for the DMARC controller. In the first algorithm the controller's adjustment is made, in real time, through the variation of a parameter in the adaptation law. In the second algorithm the control law is generated, using fuzzy logic with Takagi-Sugeno s model, to obtain a combination of the MRAC and VS-MRAC control laws. In both cases, the combined control structure is shown to be robust to the parametric uncertainties and external disturbances, with a fast transient performance, practically without oscillations, and a smoothness steady-state control signal
Resumo:
In this work is proposed an indirect approach to the DualMode Adaptive Robust Controller (DMARC), combining the typicals transient and robustness properties of Variable Structure Systems, more specifically of Variable Structure Model Reference Adaptive Controller (VS-MRAC), with a smooth control signal in steady-state, typical of conventional Adaptive Controllers, as Model Reference Adaptive Controller (MRAC). The goal is to provide a more intuitive controller design, based on physical plant parameters, as resistances, inertia moments, capacitances, etc. Furthermore, with the objective to follow the evolutionary line of direct controllers, it will be proposed an indirect version for the Binary Model Reference Adaptive Controller (B-MRAC), that was the first controller attemptting to act as MRAC as well as VS-MRAC, depending on a pre-defined fixed parameter
Resumo:
New versions of SCTP protocol allow the implementation of handover procedures in the transport layer, as well as the supply of a partially reliable communication service. A communication architecture is proposed herein, integrating SCTP with the session initiation protocol, SIP, besides additional protocols. This architecture is intended to handle voice applications over IP networks with mobility requirements. User localization procedures are specified in the application layer as well, using SIP, as an alternative mean to the mechanisms used by traditional protocols, that support mobility in the network layer. The SDL formal specification language is used to specify the operation of a control module, which coordinates the operation of the system component protocols. This formal specification is intended to prevent ambiguities and inconsistencies in the definition of this module, assisting in the correct implementation of the elements of this architecture
Resumo:
The generation for termoeletricity is characterized as a solid process of conversion of thermal energy (heat) in electric without the necessity of mobile parts. Although the conversion process is of low efficiency the system presents high degree of trustworthiness and low requisite of maintenance and durability. Its principle is based on the studies of termogeneration carried through by Thomas Seebeck in 1800. The frank development of the technologies of solid state for termoeletricity generation, the necessity of the best exploitation of the energy, also with incentive the cogeneration processes, the reduction of the ambient impact allies to the development of modules semiconductors of high efficiency, converge to the use of the thermoeletric generation through components of solid state in remote applications. The work presents the development, construction and performance evaluation of an prototype, in pilot scale, for energy tri-generation aiming at application in remote areas. The unit is composed of a gas lamp as primary source of energy, a module commercial semiconductor for thermoelectric generation and a shirt for production of the luminosity. The project of the device made compatible a headstock for adaptation in the gas lamp, a hot source for adaptation of the module, an exchanger of to be used heat as cold source and to compose first stage of cogeneration, an exchanger of tubular heat to compose second stage of cogeneration, the elaboration of a converter dc-dc type push pull, adequacy of a system of acquisition of temperature. It was become fullfilled assembly of the prototype in group of benches for tests and assay in the full load condition in order to evaluate its efficiency, had been carried through energy balance of the unit. The prototype presented an electric efficiency of 0,73%, thermal of 56,55%, illumination of 1,35% and global of 58,62%. The developed prototype, as the adopted methodology of assay had also taken care of to the considered objectives, making possible the attainment of conclusive results concerning to the experiment. Optimization in the system of setting of the semicondutor module, improvement in the thermal insulation and design of the prototype and system of protection to the user are suggestions to become it a commercial product
Resumo:
The aim of this study is to create an artificial neural network (ANN) capable of modeling the transverse elasticity modulus (E2) of unidirectional composites. To that end, we used a dataset divided into two parts, one for training and the other for ANN testing. Three types of architectures from different networks were developed, one with only two inputs, one with three inputs and the third with mixed architecture combining an ANN with a model developed by Halpin-Tsai. After algorithm training, the results demonstrate that the use of ANNs is quite promising, given that when they were compared with those of the Halpín-Tsai mathematical model, higher correlation coefficient values and lower root mean square values were observed
Resumo:
Este trabalho apresenta uma extensão do provador haRVey destinada à verificação de obrigações de prova originadas de acordo com o método B. O método B de desenvolvimento de software abrange as fases de especificação, projeto e implementação do ciclo de vida do software. No contexto da verificação, destacam-se as ferramentas de prova Prioni, Z/EVES e Atelier-B/Click n Prove. Elas descrevem formalismos com suporte à checagem satisfatibilidade de fórmulas da teoria axiomática dos conjuntos, ou seja, podem ser aplicadas ao método B. A checagem de SMT consiste na checagem de satisfatibilidade de fórmulas da lógica de primeira-ordem livre de quantificadores dada uma teoria decidível. A abordagem de checagem de SMT implementada pelo provador automático de teoremas haRVey é apresentada, adotando-se a teoria dos vetores que não permite expressar todas as construções necessárias às especificações baseadas em conjuntos. Assim, para estender a checagem de SMT para teorias dos conjuntos destacam-se as teorias dos conjuntos de Zermelo-Frankel (ZFC) e de von Neumann-Bernays-Gödel (NBG). Tendo em vista que a abordagem de checagem de SMT implementada no haRVey requer uma teoria finita e pode ser estendida para as teorias nãodecidíveis, a teoria NBG apresenta-se como uma opção adequada para a expansão da capacidade dedutiva do haRVey à teoria dos conjuntos. Assim, através do mapeamento dos operadores de conjunto fornecidos pela linguagem B a classes da teoria NBG, obtem-se uma abordagem alternativa para a checagem de SMT aplicada ao método B
Resumo:
The process for choosing the best components to build systems has become increasingly complex. It becomes more critical if it was need to consider many combinations of components in the context of an architectural configuration. These circumstances occur, mainly, when we have to deal with systems involving critical requirements, such as the timing constraints in distributed multimedia systems, the network bandwidth in mobile applications or even the reliability in real-time systems. This work proposes a process of dynamic selection of architectural configurations based on non-functional requirements criteria of the system, which can be used during a dynamic adaptation. This proposal uses the MAUT theory (Multi-Attribute Utility Theory) for decision making from a finite set of possibilities, which involve multiple criteria to be analyzed. Additionally, it was proposed a metamodel which can be used to describe the application s requirements in terms of the non-functional requirements criteria and their expected values, to express them in order to make the selection of the desired configuration. As a proof of concept, it was implemented a module that performs the dynamic choice of configurations, the MoSAC. This module was implemented using a component-based development approach (CBD), performing a selection of architectural configurations based on the proposed selection process involving multiple criteria. This work also presents a case study where an application was developed in the context of Digital TV to evaluate the time spent on the module to return a valid configuration to be used in a middleware with autoadaptative features, the middleware AdaptTV
Resumo:
This work aims to develop modules that will increase the computational power of the Java-XSC library, and XSC an acronym for "Language Extensions for Scientific Computation . This library is actually an extension of the Java programming language that has standard functions and routines elementary mathematics useful interval. in this study two modules were added to the library, namely, the modulus of complex numbers and complex numbers of module interval which together with the modules original numerical applications that are designed to allow, for example in the engineering field, can be used in devices running Java programs