4 resultados para Métodos de comunicación total

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introdução: A obesidade infantil apresenta incidência crescente e as possíveis comorbidades, como alteração da função respiratória, estão cada vez mais presente nessa faixa etária. O tecido adiposo impõe carga ao sistema respiratório o que leva a um padrão restritivo. Essa condição sofre alterações com as mudanças posturais, onde a gravidade influencia o padrão respiratório de acordo com o posicionamento adotado. Objetivo: Avaliar a distribuição dos volumes total e regional e o movimento tóracoabdominal de crianças e adolescentes que estão acima do peso nas posturas supino e sentado. Métodos: Cinqüenta e duas crianças/adolescentes (8-12 anos) divididas em três grupos: Grupo Obeso (GO=22); Grupo Sobrepeso (GSP=9); Grupo Controle (GC=21) foram avaliadas quanto às medidas antropométricas, teste de função pulmonar, exame das pressões respiratórias máxima e a pletismografia optoeletrônica em duas posturas, supino e sentado, durante a respiração tranquila. Resultados: As crianças que estão obesas apresentaram maiores valores em relação ao GSP e GC das seguintes variáveis espirométricas: volume expiratório forçado no primeiro segundo (VEF1) (p<0.05) e capacidade vital forçada (CVF) (p<0.01). No exame de manovacuometria o GO apresentou um aumento na pressão inspiratória máxima (PImáx) (p<0.01) em comparação com os outros grupos. Quanto à distribuição do volume corrente, o GO possui uma maior contribuição do compartimento abdominal (AB) na postura supina (p<0.05) em relação ao GC e GSP, enquanto que na postura sentada os grupos não diferiram em relação à distribuição dos volumes. O GO apresentou maior assincronia na postura supina (p<0.05) e maior velocidade de encurtamento (p<0.05) em relação os outros grupos. Conclusão: A obesidade em crianças/adolescentes não provoca prejuízos na função pulmonar, incrementa a força muscular inspiratória, aumenta a participação do compartimento AB e a assincronia no MTA na postura em supino, conclui-se que a postura supina associada à obesidade provoca aumento da sobrecarga do diafragma, desfavorecendo o desempenho do sistema respiratório.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Benzylpenicillin (PENG) have been as the active ingredient in veterinary medicinal products, to increase productivity, due to its therapeutic properties. However, one of unfortunate quality and used indiscriminately, resulting in residues in foods exposed to human consumption, especially in milk that is essential to the diet of children and the ageing. Thus, it is indispensable to develop new methods able to detect this waste food, at levels that are toxic to human health, in order to contribute to the food security of consumers and collaborate with regulatory agencies in an efficient inspection. In this work, were developed methods for the quality control of veterinary drugs based on Benzylpenicillin (PENG) that are used in livestock production. Additionally, were validated methodologies for identifying and quantifying the antibiotic residues in milk bovine and caprine. For this, the analytical control was performed two steps. At first, the groups of samples of medicinal products I, II, III, IV and V, individually, were characterized by medium infrared spectroscopy (4000 – 600 cm-1). Besides, 37 samples, distributed in these groups, were analyzed by spectroscopy in the ultraviolet and near infrared region (UV VIS NIR) and Ultra Fast Liquid Chromatograph coupled to linear arrangement photodiodes (UFLC-DAD). The results of the characterization indicated similarities, between PENG and reference standard samples, primarily in regions of 1818 to 1724 cm-1 of ν C=O that shows primary amides features of PENG. The method by UFLC-DAD presented R on 0.9991. LOD of 7.384 × 10-4 μg mL-1. LOQ of 2.049 × 10-3 μg mL-1. The analysis shows that 62.16% the samples presented purity ≥ 81.21%. The method by spectroscopy in the UV VIS NIR presented medium error ≤ 8 – 12% between the reference and experimental criteria, indicating is a secure choice for rapid determination of PENG. In the second stage, was acquiring a method for the extraction and isolation of PENG by the addition of buffer McIlvaine, used for precipitation of proteins total, at pH 4.0. The results showed excellent recovery values PENG, being close to 92.05% of samples of bovine milk (method 1). While samples of milk goats (method 2) the recovery of PENG were 95.83%. The methods for UFLC-DAD have been validated in accordance with the maximum residue limit (LMR) of 4 μg Kg-1 standardized by CAC/GL16. Validation of the method 1 indicated R by 0.9975. LOD of 7.246 × 10-4 μg mL-1. LOQ de 2.196 × 10-3 μg mL-1. The application of the method 1 showed that 12% the samples presented concentration of residues of PENG > LMR. The method 2 indicated R by 0.9995. LOD 8.251 × 10-4 μg mL-1. LOQ de 2.5270 × 10-3 μg mL-1. The application of the method showed that 15% of the samples were above the tolerable. The comparative analysis between the methods pointed better validation for LCP samples, because the reduction of the matrix effect, on this account the tcalculs < ttable, caused by the increase of recovery of the PENG. In this mode, all the operations developed to deliver simplicity, speed, selectivity, reduced analysis time and reagent use and toxic solvents, particularly if compared to the established methodologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Benzylpenicillin (PENG) have been as the active ingredient in veterinary medicinal products, to increase productivity, due to its therapeutic properties. However, one of unfortunate quality and used indiscriminately, resulting in residues in foods exposed to human consumption, especially in milk that is essential to the diet of children and the ageing. Thus, it is indispensable to develop new methods able to detect this waste food, at levels that are toxic to human health, in order to contribute to the food security of consumers and collaborate with regulatory agencies in an efficient inspection. In this work, were developed methods for the quality control of veterinary drugs based on Benzylpenicillin (PENG) that are used in livestock production. Additionally, were validated methodologies for identifying and quantifying the antibiotic residues in milk bovine and caprine. For this, the analytical control was performed two steps. At first, the groups of samples of medicinal products I, II, III, IV and V, individually, were characterized by medium infrared spectroscopy (4000 – 600 cm-1). Besides, 37 samples, distributed in these groups, were analyzed by spectroscopy in the ultraviolet and near infrared region (UV VIS NIR) and Ultra Fast Liquid Chromatograph coupled to linear arrangement photodiodes (UFLC-DAD). The results of the characterization indicated similarities, between PENG and reference standard samples, primarily in regions of 1818 to 1724 cm-1 of ν C=O that shows primary amides features of PENG. The method by UFLC-DAD presented R on 0.9991. LOD of 7.384 × 10-4 μg mL-1. LOQ of 2.049 × 10-3 μg mL-1. The analysis shows that 62.16% the samples presented purity ≥ 81.21%. The method by spectroscopy in the UV VIS NIR presented medium error ≤ 8 – 12% between the reference and experimental criteria, indicating is a secure choice for rapid determination of PENG. In the second stage, was acquiring a method for the extraction and isolation of PENG by the addition of buffer McIlvaine, used for precipitation of proteins total, at pH 4.0. The results showed excellent recovery values PENG, being close to 92.05% of samples of bovine milk (method 1). While samples of milk goats (method 2) the recovery of PENG were 95.83%. The methods for UFLC-DAD have been validated in accordance with the maximum residue limit (LMR) of 4 μg Kg-1 standardized by CAC/GL16. Validation of the method 1 indicated R by 0.9975. LOD of 7.246 × 10-4 μg mL-1. LOQ de 2.196 × 10-3 μg mL-1. The application of the method 1 showed that 12% the samples presented concentration of residues of PENG > LMR. The method 2 indicated R by 0.9995. LOD 8.251 × 10-4 μg mL-1. LOQ de 2.5270 × 10-3 μg mL-1. The application of the method showed that 15% of the samples were above the tolerable. The comparative analysis between the methods pointed better validation for LCP samples, because the reduction of the matrix effect, on this account the tcalculs < ttable, caused by the increase of recovery of the PENG. In this mode, all the operations developed to deliver simplicity, speed, selectivity, reduced analysis time and reagent use and toxic solvents, particularly if compared to the established methodologies.