8 resultados para Logic, Modern
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Assuming that the form of a building shell and its content the spatial form are distinct dimensions of architecture - however indivisible and interdependent -, this study focus, in the light of the Social Logic of Space (HILLIER; HANSON, 1984), on the intrinsic properties through which domestic space was structured in a sample of single-family dwellings built in João Pessoa (PB) during the 1970s - when the vocabulary of modern architecture still prevailed in Brazil though sharing the urban scene with other architectural trends -, in order to investigate regularities or divergences underlying their conception. These dwellings were originally classified (ARAÚJO, 2010a) in five categories defined according to the form of their building shells and to their prevailing construction techniques: (1) Brazilian modern legacy (considered as truly Brazilian modern style); (2) Paulista architecture (that refers to the modern production of São Paulo, Brazil, from the 1950s through the 1970s); (3) experiences of rationalization and prefabrication ; (4) experiences of adaptation to the climate (referring to a design strongly influenced by the hot and humid climate of North-eastern Brazil); and (5) hybrid (to account for a kind of stylistic hybridism that includes formal attributes, which evoke our colonial past). This study aims to determine, through the analyses of nineteen cases that represent each category, whether this taxonomy corresponds to distinct modes of spatial configuration. This research therefore proposes an approach to the classification of domestic architecture based on topological properties. The dwellings spatial organization was represented, quantified and analyzed, their spatial properties explored in consonance with one another and with the literature. Results pointed out that there is no evidence of a reciprocal relationship between the formal look of the built shells and their respective spatial structures
Resumo:
The internet is a transbordering and potentializing environment for the information, since it makes possible the sheering, distribution and interaction of the contents available in it. However, this information system may generate an opposing move when it produces an avalanche of superficial information which difficult the absorption criticism by the user. This modern-liquid society, which is characterized by short living fashionisms, creates a fluid subject on which its habits do not become concrete, since they are so temporary that they don t shape up. The information also reproduces the same scenario, since the user is inserted into a logic based on supplying information and so it is conditioned to consume, not absorb or transform them into knowledge, since the flow of content production does not allow it. It is in his context that the publishing of cultural expressions come to be questioned, since they follow a liquid society trend. This discussion will take on topics that approach diverse cultural expressions in Sergipe, such as cinema, theater, craftsmanship, events, memory spaces(museums, art galleries, memorials, files, libraries, history institutes, science academies), amongst others and will analyze the content production of the Infonet Portal, from the reports published during April, May and June of 2008, period considered to be of cultural turbulence in the state, due to the June Festivals (Saint john, Saint Joseph and Saint Peter). To do so, Zigmunt Bauman s, Pierre Levy s, Edgar Morin s and Dominique Wolton s ideas were discussed. Besides, were analyzed the characteristics of the internet and its applicability within the portal hereby discussed in order to perceive the way the information is produced in the cyber culture, a movement that allows memorization, potentialization, interaction , besides other criteria inherent to the cyberspace
Resumo:
The aim of the present study is to reevaluate the logical thought of the English mathematician George Boole (1815 - 1864). Thus, our research centers on the mathematical analysis of logic in the context of the history of mathematics. In order to do so, we present various biographical considerations about Boole in the light of events that happened in the 19th century and their consequences for mathematical production. We briefly describe Boole's innovations in the areas of differential equations and invariant theory and undertake an analysis of Boole's logic, especially as formulated in the book The Mathematical Analysis of Logic, comparing it not only with the traditional Aristotelian logic, but also with modern symbolic logic. We conclude that Boole, as he intended, expanded logic both in terms of its content and also in terms of its methods and formal elaboration. We further conclude that his purpose was the mathematical modeling of deductive reasoning, which led him to present an innovative formalism for logic and, because the different ways it can be interpreted, a new conception of mathematics
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
The development of this work arises from the research of sociological and philosophical characters contemplating also other approaches which aims to answer the followingquestions: what is the responsibility of science teaching for the image one has about science? ; which scientific education should be designed for nowadays? . After considering the assumptions brought along by rationalism and the criticisms to the illuminist model proposed by sociology and philosophy of science, as well by the biology of the knowing process, going through discussions concerning post-modernity issues, one is given to understand that the image of science has become the central point of discussion in the last hundred years, including what concerns the area of science teaching, and that practically none of those discussions really reached natural science classes indeed. We adopt the term postontological to characterize the recent proposals on philosophy and sociology, because we evaluate that this term allows a better identification of the scientific realism crisis, which supports the existence of an ontological domain which science, and only science, is able to understand. One notices that the general public is not aware of those discussions, mainly if they are science teachers and students. So we believe that discussing the logic in which science is structured, the new understandings concerning the scientific undertaking, especially those of an externalist character, and the relationship between science and society, all of this contributes to build up a science teaching which contemplates a reflective contribution, besides allowing the inclusion of the study of other epistemologies in the educational practice. We argue that a revisionist posture seems to be the most appropriate for the contemporary scientific education, contemplating, besides the teaching of the usual science contents, discussions on the issues involving that knowledge, as well as respecting epistemologies alternative to the modern Western scientific one, in order one can work on the perception of local knowledge generated from other epistemological bases. We describe here practical activities we did involving teachers (short-term courses) and high-school students in an inland school in the Rio Grande do Norte state, in Brazil, as a way to demonstrate the possibility of interventions which can take those conceptions, discussions and changes to the classroom
Resumo:
The philosophical discussion has been present throughout the whole history of reason, for philosophy and reason have been always closely linked. In the following work, Reason, origin, crises and contemporary answers I go into the history of the rational and demonstrative thought, focusing on how rationality can be thought about in contemporary philosophy. To answer this question I discuss the principle of philosophy, the mythical period and the thoughts of Heraclito , Parmenides , Plato and Aristotle in relation to reason and rationality. Also discussed is the medieval period and the philosophical use of logic and the criticism of Aristotle s thoughts, especially focusing on the criticism of Hegel and Luckasiewicz of the non contradiction principle. Lastly I discuss the development of reason in present day philosophy, mainly how modern logics could be putting at stake Aristotle s model of reason
Resumo:
O método de combinação de Nelson-Oppen permite que vários procedimentos de decisão, cada um projetado para uma teoria específica, possam ser combinados para inferir sobre teorias mais abrangentes, através do princípio de propagação de igualdades. Provadores de teorema baseados neste modelo são beneficiados por sua característica modular e podem evoluir mais facilmente, incrementalmente. Difference logic é uma subteoria da aritmética linear. Ela é formada por constraints do tipo x − y ≤ c, onde x e y são variáveis e c é uma constante. Difference logic é muito comum em vários problemas, como circuitos digitais, agendamento, sistemas temporais, etc. e se apresenta predominante em vários outros casos. Difference logic ainda se caracteriza por ser modelada usando teoria dos grafos. Isto permite que vários algoritmos eficientes e conhecidos da teoria de grafos possam ser utilizados. Um procedimento de decisão para difference logic é capaz de induzir sobre milhares de constraints. Um procedimento de decisão para a teoria de difference logic tem como objetivo principal informar se um conjunto de constraints de difference logic é satisfatível (as variáveis podem assumir valores que tornam o conjunto consistente) ou não. Além disso, para funcionar em um modelo de combinação baseado em Nelson-Oppen, o procedimento de decisão precisa ter outras funcionalidades, como geração de igualdade de variáveis, prova de inconsistência, premissas, etc. Este trabalho apresenta um procedimento de decisão para a teoria de difference logic dentro de uma arquitetura baseada no método de combinação de Nelson-Oppen. O trabalho foi realizado integrando-se ao provador haRVey, de onde foi possível observar o seu funcionamento. Detalhes de implementação e testes experimentais são relatados