38 resultados para Liberação controlada de fármacos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)
Resumo:
With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)
Resumo:
Biodegradable microspheres used as controlled release systems are important in pharmaceutics. Chitosan biopolymer represents an attractive biomaterial alternative because of its physicochemical and biological characteristics. Chitosan microspheres are expected to become promising carrier systems for drug and vaccine delivery, especially for non-invasive ways oral, mucosal and transdermal routes. Controlling the swelling rate and swelling capacity of the hydrogel and improving the fragile nature of microspheres under acidic conditions are the key challenges that need to be overcomed in order to enable the exploration of the full pharmaceutical potential use of these microparticles. Many studies have focused on the modification of chitosan microsphere structures with cross-linkers, various polymers blends and new organic-inorganic hybrid systems in order to obtain improved properties. In this work, microspheres made of chitosan and nanosized hydrophobic silica (Aerosil R972) were produced by a method consisting of two steps. First, a preparation of a macroscopically homogeneous chitosan-hydrophobic silica dispersion was prepared followed by spray drying. FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to characterize the microspheres. Also, the were conducted acid stability, moisture sorption capacity, release properties and biological assays. The chitosan-hydrophobic silica composite microspheres showed improved thermal degradation, lower water affinity, better acid stability and ability to retard rifampicin and propranolol hydrochloride (drug models) release under simulated physiological conditions. In vitro biocompatibility studies indicated low cytotoxicity and low capacity to activate cell production of the pro-inflammatory mediator nitric oxide. The results show here encourage further studies on the use of the new chitosan-hydrophobic silica composite microspheres as drug carrier systems via oral or nasal routes.
Resumo:
Polymer particles in the nanometer range are of fundamental interest today, especially when used as carrier systems in the controlled release of drugs, cosmetics and nutraceuticals, as well as in coating materials with magnetic properties. The main objective of the present study concerns the production of submicron particles of poly (methyl methacrylate) (PMMA) by crystallization of a polymer solution by thermally controlled cooling. In this work, PMMA solutions in ethanol and 1-propanol were prepared at different concentrations (1% to 5% by weight) and crystallized at different cooling rates (0.2 to 0.8 ° C / min) controlled linearly. Analysis of particle size distribution (DLS / CILAS) and scanning electron microscopy (SEM) were performed in order to evaluate the morphological characteristics of the produced particles. The results demonstrated that it is possible to obtain submicron polymer perfectly spherical particles using the technique discussed in this study. It was also observed that, depending on the cooling rate and the concentration of the polymer solution, it is possible to achieve high yield in the formation of submicron particles. In addition, preliminary tests were performed in order to verify the ability of this technique to form particulated carrier material with magnetic properties. The results showed that the developed technique can be an interesting alternative to obtain polymer particles with magnetic properties
Resumo:
Chitosan nanoparticles have been used in several systems for the controlled release of drugs. The aim of this study was to obtain and characterize chitosan nanoparticles prepared by the method of coacervation / precipitation using sodium sulfate at different concentrations as the crosslinking agent. The characterization was done using zeta potential and small angle Xray scattering, SAXS. The dispersions of chitosan were obtained at pH 1 and pH = 3. The results of zeta potential at pH = 1 ranged from +64.8 to +29.27 mV and for pH = 3 they varied from +72.4 to +23.48 mV, indicating that the chain of chitosan is positively charged in acidic pH and the behavior of nanoparticles in terms of surface charge was independent of pH. However, the results indicated a dependence of particle size in relation to pH. This difference in behavior was explained by the influence of enthalpic and entropic components
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Magnetic particles are systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover magnetic particles with an organic material, as polymers. In this work, magnetic particles were obtained through covering magnetite particles with poly(methyl methacrylate‐comethacrylic acid) via miniemulsion polymerization process. The resultant materials were characterized X‐ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zeta potential (��) measurements and vibrating sample magnetometry (VSM). XRD results showed magnetite as the predominant cristalline phase in all samples and that cristallites had nanometric dimensions. Thermogravimetric analysis revealed an increase in polymer thermal stability as a result of magnetite encapsulation. TGA results showed also that the encapsulation efficiency was directly related to nanoparticles s hidrofobicity degree. VSM measurements showed that magnetic polymeric particles were superparamagnetic, so that they may be potentially used for magnetic (bio)separation
Resumo:
The infection caused by Helicobacter pylori (H. pylori) is associated with gastroduodenal inflammation can lead to the development of gastritis, gastric or duodenal ulcer and gastric cancer (type 1 carcinogen for stomach cancer). Amoxicillin is used as first-line therapy in the treatment of H. pylori associated to metronidazole or clarithromycin, and a proton pump inhibitor. However, the scheme is not fully effective due to inadequate accumulation of antibiotics in gastric tissue, inadequate efficacy of ecological niche of H. pylori, and other factors. In this context, this study aimed to obtaining and characterization of particulate systems gastrorretentivos chitosan - amoxicillin aiming its use for treatment of H. pylori infections. The particles were obtained by the coacervation method / precipitation using sodium sulfate as precipitating agent and crosslinking and two techniques: addition of amoxicillin during preparation in a single step and the sorption particles prior to amoxycillin prepared by coacervation / precipitation and spray drying. The physicochemical characterization of the particles was performed by SEM, FTIR, DSC, TG and XRD. The in vitro release profile of amoxycillin free and incorporated in the particles was obtained in 0.1 N HCl (pH = 1.2). The particles have higher encapsulation efficiency to 80% spherical shape with interconnected particles or adhered to each other, the nanometric diameter to the systems obtained by coacervation / precipitation and fine for the particles obtained by spray drying. The characterization by FTIR, DSC and XRD showed that the drug was incorporated into the nanoparticles dispersed in the polymeric matrix. Thermal analysis (TG and DSC) indicated that encapsulation provides greater heat stability to the drug. Amoxicillin encapsulated in nanoparticles had slower release compared to free drug. The particles showed release profile with a faster initial stage (burst effect) reaching a maximum at 30 minutes 35% of amoxicillin for the system in 1: 1 ratio relative to the polymer and 80% for the system in the ratio 2: 1. Although simple and provide high encapsulation efficiency of amoxicillin, the process of coacervation, precipitation in one step using sodium sulfate as precipitant / cross-linker must be optimized in order to adjust the release kinetics according to the intended application.
Resumo:
Durante as últimas décadas, as indústrias farmacêuticas têm despertado grande interesse em óleos vegetais e vários extratos de planta por causa da sua baixa toxicidade e alta biodegrabilidade. O óleo de copaíba (Cop) é usado in natura na medicina popular como anti-inflamatório e antimicrobiano para tratar várias doenças, tais como inflamação da garganta, úlceras e infecções urinárias e pulmonares. Emulsões são sistemas dispersos termodinamicamente instáveis que consistem em dispersões de gotículas microscópicas em outro líquido imiscível. O objetivo deste trabalho foi preparar diferentes emulsões de Cop, determinar o EHL crítico deste óleo e avaliar a sua estabilidade, além de realizar estudos comparativos entre diferentes métodos de construção de diagramas de fases. As emulsões foram preparadas pelo método de inversão de fases variando as proporções de EHL de 4,7 a 16,7. A estabilidade foi determinada por vários métodos e os diagramas de fases foram produzidos pelo método de titulação usando diferentes procedimentos de agitação. As emulsões a base de Cop com EHL entre 12,7 e 15,7 foram as mais estáveis. As emulsões apresentaram boa estabilidade em curto e longo prazo, aspecto leitoso e baixos valores de índice de cremagem. Diferentes sistemas coloidais foram produzidos a partir dos diagramas de fases dependendo do processo de agitação. Baseado nesses métodos, o valor determinado de EHL do Cop foi 14,8, as emulsões permaneceram estáveis por mais de um ano e estes resultados indicam que o estudo das emulsões de Cop pode ser um promissor veículo de liberação tópica de fármacos e ativos cosméticos
Resumo:
Currently, studies in the area of polymeric microcapsules and nanocapsules and controlled release are considerably advanced. This work aims the study and development of microcapsules and nanocapsules from Chitosan/MDI, using a new technique of interfacial polycondensation combined to spontaneous emulsification, for encapsulation of BZ-3. It was firstly elaborated an experimental design of 23 of the particle in white without the presence of BZ-3 and Miglyol, where the variables were the concentrations of MDI, chitosan and solvent. Starting from the data supplied by the experimental design was chosen the experiment with smaller particle diameter and only added like this BZ-3 and Miglyol. The suspension containing concentrations of 6.25 mg/mL, 12.5 mg/mL, 18.75 mg/mL, 25 mg/mL of BZ-3 were prepared, nevertheless, during the storage time, these formulations presented drug precipitates in the suspensions of 18.75 mg/mL and 25 mg/mL of BZ-3. This apparition of precipitate was attributed to the diffusion of BZ-3 for the aqueous phase without any encapsulation, suggesting so the use of the smaller concentrations of the BZ-3. The suspension containing 6.25mg/mL of BZ3 presented average size of 1.47μm, zeta potential of 61 mV, pH 5.64 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. The suspension containing 12.5mg/mL of BZ-3 presented average size of 1.76μm, zeta potential of 47.4 mV, pH 5.71 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. Then, showing such important characteristics, these two formulations were chosen for futher continuity to the study. These formulations were also characterized by the morphology, FTIR, stability for Turbiscan, DSC and a study of controlled release of the BZ-3 was elaborated in different receiving means
Resumo:
The aim of this work was to perform the extraction and characterization of xylan from corn cobs and prepare xylan-based microcapsules. For that purpose, an alkaline extraction of xylan was carried out followed by the polymer characterization regarding its technological properties, such as angle of repose, Hausner factor, density, compressibility and compactability. Also, a low-cost and rapid analytical procedure to identify xylan by means of infrared spectroscopy was studied. Xylan was characterized as a yellowish fine powder with low density and poor flow properties. After the extraction and characterization of the polymer, xylan-based microcapsules were prepared by means of interfacial crosslinking polymerization and their characterization was performed in order to obtain gastroresistant multiparticulate systems. This work involved the most suitable parameters of the preparation of microcapsules as well as the study of the process, scale-up methodology and biological analysis. Magnetic nanoparticles were used as a model system to be encapsulated by the xylan microcapsules. According to the results, xylan-based microcapsules were shown to be resistant to several conditions found along the gastrointestinal tract and they were able to avoid the early degradation of the magnetic nanoparticles
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Bionanocomposites systems clay base (montmorillonite and sepiolite), layered double hidroxides and biopolymers (carboxymethylcellulose and zein) were evaluated as topical delivery systems with antibacterial activity and as oral delivery systems. For this study, neomycin, a topical antibiotic, indicated mainly for open wound infections. The drug amoxicillin, an antibiotic indicated mainly for throat infections, were also used in this study. Both antibiotics were used as model drugs. Initially, drugs were incorporated directly into the biopolymer matrix, comprising the combination of carboxymethylcellulos and zein, being conformed as movies and balls and evaluated for their antibacterial activity and controlled release simulating gastrointestinal fluids. Moreover, hybrids materials have been prepared where the neomycin drug was incorporated into the lamellar inorganic solids, such as montmorillonite by ion exchange reaction, and the fibrous type, such as sepiolite by adsorption in aqueous solution. But the drug amoxicillin was incorporated into layered double hydroxides by anion exchange and montmorillonite by cation exchange. The resulting hybrids were in turn combined with the biopolymer matrix yielding bionanocomposites shaped materials such as films were tested for their antibacterial activity, and the shaped materials beads were tested for their release in the gastrointestinal fluids. Through the analysis of various physico-chemical techniques, we observed the interactions between the studied materials, the formation of hybrids materials, obtaining the bionanocomposites materials and material efficiency when applied in controlled release of drugs both topical and use oral mainly influenced by the presence of zein, are promising as topical delivery systems and oral drugs.
Desenvolvimento de sistemas magnéticos com potencialidades terapêuticas para vetorização de fármacos
Resumo:
Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.