21 resultados para Langmuir adsorption model

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, chitosan was used as a coating of pure perlite in order to increase the accessibility of the groups OH- e NH2+the adsorptionof ions Mn2+ e Zn2+.The characterization results of the expanded perlite classified as microporous and whose surface area 3,176 m2 g-1after the change resulted in 4,664 m2g-1.From the thermogravimetry(TG) it was found that the percentage of coating was34,3%.The infrared analysis can prove the presence of groups Si-OH, Si-O e Al-O-Siresulting from the perlite and C=O, NH2and OH characterization of chitosan. The experiments on experiments on the adsorption of Mn and Zn were performed in the concentration range of10 a 50 mgL-1and the adsorption capacity inpH 5,8 e 5,2 was 19,49 and 23,09 mgg-1to 25 oC,respectively.The adsorption data were best fitted to Langmuir adsorption model to Langmuir adsorption model for both metalionsisindicative of monolayer adsorption. The kinetics of adsorption were calculated from the equation of Lagergren fitting the model pseudo-second-order for all initial concentrations, suggesting that adsorption of ions Mn2+ and Zn2+ follows the kinetics of pseudo-second-order and whose constant Speedk2(g/mg.min) are 0,105 e 3,98 and capacity and maximum removal qe 4,326 e 3,348,respectively.In this study we used a square wave voltammetry cathodic stripping voltammetry to quantify the adsorbed ions, and the working electrode glassy carbon, reference electrode silver / silver chloride and a platinum auxiliary electrode. The attainment of the peaks corresponding to ions Mn2+ and Zn2+ was evaluated in and electrochemical cell with a capacity of 30 mL using a buffer system (Na2HPO4/NaH2PO4)at pH 4 and was adjusted with solutionsH3PO4 0,1molL-1and NaOH 0,1 molL-1and addition of the analyte has been a cathodic peak in- 0,873 Vand detection limit of2,55x10-6molL-1para Zn.The dough used for obtaining the adsorption isotherm was 150 mg and reached in 120 min time of equilibrium for both metal ions.The maximum adsorption for 120 min with Mn concentration 20 mgL-1 and Zn 10 mgL-1,was91, 09 e 94, 34%, respectively

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Searches using organoclays have been the subject of great interest due to its wide application in industry and removal of environmental pollutants. The organoclays were obtained using bentonite (BEN) and cationic surfactants: hexadecyltrimethyl ammonium bromide (HDTMA-Br) and trimethyloctadecyl ammonium bromide (TMOA-Br) in ratios of 50 and 100 % of its ion exchange capacity. The materials were characterized by the techniques of X-ray diffraction (DRX), infrared spectroscopy (IR), X-ray fluorescence (FRX), thermal analysis (TA) and scanning electron microscopy (SEM). The bentonite and organobentonite were used on the adsorption of dyes, Remazol Blue RR (AZ) and Remazol Red RR (VM) in aqueous solution. The adsorption models of Langmuir and Freundlich were used for mathematical description of sorption equilibrium data and obtain the constants of the isotherms. The Freundlich model fit to the data for adsorption equilibrium of bentonite, on the other hand both the model fit to the Langmuir adsorption test of organoclays. The adsorption processes using adsorbents with both dyes interspersed with HDTMA-Br show endothermic and exothermic nature, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The destructive impact of improper disposal of heavy metals in the environment increases as a direct result of population explosion, urbanization and industrial expansion and technological developments. Argil are potential materials for adsorption of inorganic and the pelletization of it is required for use in adsorptive columns of fixed bed. The low cost and the possibility of regeneration makes these materials attractive for use in the purification process, capable of removing inorganic compounds in contaminated aquatic environments. In this work was made pellets of a mixture of dolomite and montmorillonite by wet agglomeration, in different percentages. The removal of Pb (II) was investigated through experimental studies, and was modeled by kinetic models and isotherms of adsorption. The materials were characterized using the techniques of XRD, TG / DTA, FT-IR, and surface area by BET method. The results showed the adsorption efficiency of the contaminant by the composite material studied in synthetic solution. The study found that the adsorption follows the Langmuir model, and the kinetics of adsorption follows the model of pseudosecond order

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the potential use of smectite clays for color removal of textile effluents. The experiments were performed by testing exploratory/planning method factorial and fractional factorial where the factors and levels are predetermined. The smectite clays were used originating from gypsum hub of the region Araripe-PE, and the dye used was Reactive Yellow BF-4G 200%. The smectite clay was collected and transported to the Laboratory of Soil Physics of UFRPE, where it held its preparation through air drying, lump breaking and classification in sieve to then submit it to the adsorption process. Upon completion of 22 complete factorial design it was concluded that the values of (96, 96,5 and 95,8%) corresponding to the percentage of of removal for "in-kind", chemically and thermally activated, respectively and adsorbed amounts of (4,80, 4,61 and 4,74 mg/g) for three clays. Showed that the activation processes used did not increase the adsorption capacity of smectite clay. The kinetic data were best fitted to the Freundlich isotherm, with an exponential distribution of active sites and that shows above the Langmuir equation for adsorption of cations and anions by clays. The kinetic model that best adapted to the results was the pseudosecond order model. In the factorial design study 24-1, at concentrations up to 500 mg/L obtains high percentage of color removal (92,37, 90,92 and 93,40%) and adsorbed amount (230,94, 227,31 and 233,50 mg/g) for three clays. The kinetic data fitted well to Langmuir and Freundlich isotherms. The kinetic model that best adapted to the results was the pseudosecond order model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work depicts a study of the adsorption of carbon dioxide on zeolite 13X. The activities were divided into four stages: study batch adsorption capacity of the adsorbent with synthetic CO2 (4%), fixed bed dynamic evaluation with the commercial mixture of gases (4% CO2, 1.11% CO, 1 2% H2, 0.233% CH4, 0.1% C3, 0.0233% C4 argon as inert closing balance), fixed bed dynamic modeling and evaluation of the breakthrough curve of CO2 originated from the pyrolysis of sewage sludge. The sewage sludge and the adsorbent were characterized by analysis TG / DTA, SEM, XRF and BET. Adsorption studies were carried out under the following operating conditions: temperature 40 °C (for the pyrolysis of the sludge T = 600 °C), pressures of 0.55 to 5.05 bar (batch process), flow rate of the gaseous mixture between 50 - 72 ml/min and the adsorbent masses of 10, 15 and 20 g (fixed bed process). The time for the adsorption batch was 7 h and on the fixed bed was around 180 min. The results of this study showed that in batch adsorption process step with zeolite 13X is efficient and the mass of adsorbed CO2 increases with the increases pressure, decreases with temperature increases and rises due the increase of activation temperature adsorbent. In the batch process were evaluated the breakthrough curves, which were compared with adsorption isotherms represented by the models of Langmuir, Freündlich and Toth. All models well adjusted to the experimental points, but the Langmuir model was chosen in view of its use in the dynamic model does not have implications for adsorption (indeterminacy and larger number of parameters such as occurred with others) in solving the equation. In the fixed bed dynamic study with the synthetic gas mixture, 20 g of mass adsorbent showed the maximum adsorption percentage 46.7% at 40 °C temperature and 50 mL/min of flow rate. The model was satisfactorily fitted to the three breakthrough curves and the parameters were: axial dispersion coefficient (0.0165 dm2/min), effective diffusivity inside the particle (dm2/min 0.0884) and external transfer coefficient mass (0.45 dm/min). The breakthrough curve for CO2 in the process of pyrolysis of the sludge showed a fast saturation with traces of aerosols presents in the gas phase into the fixed bed under the reaction process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion usually occurs in pipelines, so that it is necessary to develop new surface treatments to control it. Surfactants have played an outstanding role in this field due to its capacity of adsorbing on metal surfaces, resulting in interfaces with structures that protect the metal at low surfactant concentrations. The appearance of new surfactants is a contribution to the area, as they increase the possibility of corrosion control at specific conditions that a particular oil field presents. The aim of this work is to synthesize the surfactants sodium 12 hydroxyocadecenoate (SAR), sodium 9,10-epoxy-12 hydroxyocadecanoate (SEAR), and sodium 9,10:12,13-diepoxy-octadecanoate (SEAL) and apply them as corrosion inhibitors, studying their action in environments with different salinities and at different temperatures. The conditions used in this work were chosen in order to reproduce oil field reality. The study of the micellization of these surfactants in the liquid-gas interface was carried out using surface tensiometry. It was observed that cmc increased as salt concentration was increased, and temperature and pH were decreased, while cmc decreased with the addition of two epoxy groups in the molecule. Using the values of cmc and the Gibbs equation, the values of Gibbs free energy of adsorption, area per adsorbed molecule, and surface excess were calculated. The surface excess increases as salt concentration and temperature decreases, increasing as pH is increased. The area per adsorbed molecule and the free energy of adsorption decrease with salt concentration, temperature, and pH increase. SAXS results showed that the addition of epoxy group in surfactant structure results in a decrease in the repulsion between the micelles, favoring the formation of more oblong micellar structures, ensuring a better efficiency of metal coverage. The increase in salt and surfactant concentrations provides an increase in micellar diameter. It was shown that the increase in temperature does not influence micellar structure, indicating thermal stability that is advantageous for use as corrosion inhibitor. The results of inhibition efficiency for the surfactants SEAR and SEAL were considered the best ones. Above cmc, adsorption occurred by the migration of micelles from the bulk of the solution to the metal surface, while at concentrations below cmc film formation must be due to the adsorption of semi-micellar and monomeric structures, certainly due to the presence of the epoxy group, which allows side interactions of the molecule with the metal surface. The metal resistance to corrosion presented values of 90% of efficiency. The application of Langmuir and Frumkin isotherms showed that the later gives a better description of adsorption because the model takes into account side interactions from the adsorbing molecules. Wettability results showed that micelle formation on the solid surface occurs at concentrations in the magnitude of 10-3 M, which isthe value found in the cmc study. This value also justifies the maximum efficiencies obtained for the measurements of corrosion resistance at this concentration. The values of contact angle as a function of time suggest that adsorption increases with time, due to the formation of micellar structures on metal surface

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical modification of clays has been extremely studied in the search for improvements of their properties for use in various areas, such as in combating pollution by industrial effluents and dyes. In this work, the vermiculite was chemically modified in two ways, characterized and evaluated the adsorption of methylene blue dye. First was changed with the addition of a surfactant (hexadecyltrimethylammonium bromide, BHTA) making it an organophilic clay and then by adding an acid (HCl) by acid activation. Some analyzes were performed as X-ray fluorescence (FRX), X-ray diffraction (DRX), adsorption isotherms of methylene blue dye, infrared (FTIR) , scanning electron microscopy (SEM), thermal gravimetric analysis and spectroscopy energy dispersive (EDS). Analysis by FRX of natural vermiculite indicates that addition of silicon and aluminum, clay presents in its structure the magnesium, calcium and potassium with 16 % organic matter cations. The DRX analyzes indicated that the organic vermiculite was an insertion of the surfactant in the space between the lamellae, vermiculite and acid partial destruction of the structure with loss of crystallinity. The adsorption isotherms of methylene blue showed that there was a significant improvement in the removal of dye to the vermiculite with the addition of cationic surfactant hexadecyltrimethylammonium bromide and treatment with acid using HCl 2 mol/L. In acid vermiculites subsequently treated with surfactant, the adsorption capacity increased with respect to natural vermiculite, however was much lower compared vermiculite modified with acid and surfactant separately. Only the acidic vermiculite treated with surfactant adjusted to the Langmuir model. As in the infrared spectrometry proved the characteristics of natural vermiculite. In the organic vermiculite was observed the appearance of characteristic bands of CH3, CH2, and (CH3)4N. Already on acid vermiculite, it was realized a partial destruction with decreasing intensity of the characteristic band of vermiculite that is between 1074 and 952 cm-1. In the SEM analysis, it was observed that there was partial destruction to the acid treatment and a cluster is noted between the blades caused by the presence of the surfactant. The TG shows that the higher mass loss occurs at the beginning of the heating caused by the elimination of water absorbed on the surface between layers. In the organic vermiculite also observed a loss of mass between 150 and 300 °C caused decomposition of the alkylammonium molecules (surfactants)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil contamination by pesticides is an environmental problem that needs to be monitored and avoided. However, the lack of fast, accurate and low cost analytical methods for discovering residual pesticide in complex matrices, such as soil, is a problem still unresolved. This problem needs to be solved before we are able to assess the quality of environmental samples. The intensive use of pesticides has increased since the 60s, because the dependence of their use, causing biological imbalances and promoting resistance and recurrence of high populations of pests and pathogens (upwelling). This has contributed to the appearance of new pests that were previously under natural control. To develop analytical methods that are able to quantify residues pesticide in complex environment. It is still a challenge for many laboratories. The integration of two analytical methods one ecotoxicological and another chemical demonstrates the potential for environmental analysis of methamidophos. The aim of this study was to evaluate an ecotoxicological method as "screening" analytical methamidophos in the soil and perform analytical confirmation in the samples of the concentration of the analyte by chemical method LC-MS/MS In this work we tested two soils: a clayey and sandy, both in contact with the kinetic methamidophos model followed pseudo-second order. The clay soil showed higher absorption of methamidophos and followed the Freundlich model, while the sandy, the Langmuir model. The chemical method was validated LC-MS/MS satisfactory, showing all parameters of linearity, range, precision, accuracy, and sensitivity adequate. In chronic ecotoxicological tests with C. dubia, the NOEC was 4.93 and 3.24 for ng L-1 of methamidophos to elutriate assays of sandy and clay soils, respectively. The method for ecotoxicological levels was more sensitive than LC-MS/MS detection of methamidophos, loamy and sandy soils. However, decreasing the concentration of the standard for analytical methamidophos and adjusting for the validation conditions chemical acquires a limit of quantification (LOQ) in ng L-1, consistent with the provisions of ecotoxicological test. The methods described should be used as an analytical tool for methamidophos in soil, and the ecotoxicological analysis can be used as a "screening" and LC-MS/MS as confirmatory analysis of the analyte molecule, confirming the objectives of this work

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing interest and applications of biotechnology products have increased the development of new processes for recovery and purification of proteins. The expanded bed adsorption (EBA) has emerged as a promising technique for this purpose. It combines into one operation the steps of clarification, concentration and purification of the target molecule. Hence, the method reduces the time and the cost of operation. In this context, this thesis aim was to evaluate the recovery and purification of 503 antigen of Leishmania i. chagasi expressed in E. coli M15 and endotoxin removal by EBA. In the first step of this study, batch experiments were carried out using two experimental designs to define the optimal adsorption and elution conditions of 503 antigen onto Streamline chelating resin. For adsorption assays, using expanded bed, it was used a column of 2.6 cm in diameter by 30.0 cm in height coupled to a peristaltic pump. In the second step of study, the removal of endotoxin during antigen recovery process was evaluated employing the non-ionic surfactant Triton X-114 in the washing step ALE. In the third step, we sought developing a mathematical model able to predict the 503 antigen breakthrough curves in expanded mode. The experimental design results to adsorption showed the pH 8.0 and the NaCl concentration of 2.4 M as the optimum adsorption condition. In the second design, the only significant factor for elution was the concentration of imidazole, which was taken at 600 mM. The adsorption isotherm of the 503 antigen showed a good fit to the Langmuir model (R = 0.98) and values for qmax (maximum adsorption capacity) and Kd (equilibrium constant) estimated were 1.95 mg/g and 0.34 mg/mL, respectively. Purification tests directly from unclarified feedstock showed a recovery of 59.2% of the target protein and a purification factor of 6.0. The addition of the non-ionic surfactant Triton X-114 to the washing step of EBA led to high levels (> 99%) of LPS removal initially present in the samples for all conditions tested. The mathematical model obtained to describe the 503 antigen breakthrough curves in Streamline Chelanting resin in expanded mode showed a good fit for both parameter estimation and validation steps. The validated model was used to optimize the efficiencies, achieving maximum values of the process and of the column efficiencies of 89.2% and 75.9%, respectively. Therefore, EBA is an efficient alternative for the recovery of the target protein and removal of endotoxin from an E. coli unclarified feedstock in just one step.