15 resultados para Interpolation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Geographic Information Systems (GIS) has becoming very important in fields where detailed and precise study of earth surface features is required. Applications in environmental protection are such an example that requires the use of GIS tools for analysis and decision by managers and enrolled community of protected areas. In this specific field, a challenge that remains is to build a GIS that can be dynamically fed with data, allowing researchers and other agents to recover actual and up to date information. In some cases, data is acquired in several ways and come from different sources. To solve this problem, some tools were implemented that includes a model for spatial data treatment on the Web. The research issues involved start with the feeding and processing of environmental control data collected in-loco as biotic and geological variables and finishes with the presentation of all information on theWeb. For this dynamic processing, it was developed some tools that make MapServer more flexible and dynamic, allowing data uploading by the proper users. Furthermore, it was also developed a module that uses interpolation to aiming spatial data analysis. A complex application that has validated this research is to feed the system with data coming from coral reef regions located in northeast of Brazil. The system was implemented using the best interactivity concept provided by the AJAX model and resulted in a substantial contribution for efficiently accessing information, being an essential mechanism for controlling events in the environmental monitoring

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to Fuzzy intelligent systems are present in a variety of equipment ranging from household appliances to small devices such as digital cameras and cell phones being used primarily for dealing with the uncertainties in the modeling of real systems. However, commercial implementations of Fuzzy systems are not general purpose and do not have portability to different hardware platforms. Thinking about these issues this work presents the implementation of an open source development environment that consists of a desktop system capable of generate Graphically a general purpose Fuzzy controller and export these parameters for an embedded system with a Fuzzy controller written in Java Platform Micro Edition To (J2ME), whose modular design makes it portable to any mobile device that supports J2ME. Thus, the proposed development platform is capable of generating all the parameters of a Fuzzy controller and export it in XML file, and the code responsible for the control logic that is embedded in the mobile device is able to read this file and start the controller. All the parameters of a Fuzzy controller are configurable using the desktop system, since the membership functions and rule base, even the universe of discourse of the linguistic terms of output variables. This system generates Fuzzy controllers for the interpolation model of Takagi-Sugeno. As the validation process and testing of the proposed solution the Fuzzy controller was embedded on the mobile device Sun SPOT ® and used to control a plant-level Quanser®, and to compare the Fuzzy controller generated by the system with other types of controllers was implemented and embedded in sun spot a PID controller to control the same level plant of Quanser®

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In machining of internal threads, dedicated tools, known as taps, are needed for each profile type, diameter, and low cutting speed values are used when compared to main machining processes. This restriction in the cutting speed is associated with the difficulty of synchronizing the tool s rotation speed and feed velocity in the process. This fact restricts the flexibility and makes machining lead times longer when manufacturing of components with threads is required. An alternative to the constraints imposed by the tap is the thread milling with helical interpolation technique. The technique is the fusion of two movements: rotation and helical interpolation. The tools may have different configurations: a single edge or multiple edges (axial, radial or both). However, thread milling with helical interpolation technique is relatively new and there are limited studies on the subject, a fact which promotes challenges to its wide application in the manufacturing shop floor. The objective of this research is determine the performance of different types of tools in the thread milling with helical interpolation technique using hardened steel workpieces. In this sense, four tool configurations were used for threading milling in AISI 4340 quenched and tempered steel (40 HRC). The results showed that climb cut promoted a greater number of machined threads, regardless of tool configuration. The upcut milling causes chippings in cutting edge, while the climb cutting promotes abrasive wear. Another important point is that increase in hole diameter by tool diameter ratio increases tool lifetime

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital Elevation Models (DEM) are numerical representations of a portion of the earth surface. Among several factors which affect the quality of a DEM, it should be emphasized the attention on the input data and the choice of the interpolating algorithm. On the other hand, several numerical models are used nowadays to characterize nearshore hydrodynamics and morphological changes in coastal areas, whose validation is based on field data collection. Independent on the complexity of the physical processes which are modeled, little attention has been given to the intrinsic bathymetric interpolation built within the numerical models of the specific application. Therefore, this study aims to investigate and to quantify the influence of the bathymetry, as obtained by a DEM, on the hydrodynamic circulation model at a coastal stretch, off the coast of the State of Rio Grande do Norte, Northeast Brazil. This coastal region is characterized by strong hydrodynamic and littoral processes, resulting in a very dynamic morphology with shallow coastal bathymetry. Important economic activities, such as oil exploitation and production, fisheries, salt ponds, shrimp farms and tourism, also bring impacts upon the local ecosystems and influence themselves the local hydrodynamics. This fact makes the region one of the most important for the development of the State, but also enhances the possibility of serious environmental accidents. As a hydrodynamic model, SisBaHiA® - Environmental Hydrodynamics System ( Sistema Básico de Hidrodinâmica Ambiental ) was chosen, for it has been successfully employed at several locations along the Brazilian coast. This model was developed at the Coastal and Oceanographical Engineering Group of the Ocean Engineering Program at the Federal University of Rio de Janeiro. Several interpolating methods were tested for the construction of the DEM, namely Natural Neighbor, Kriging, Triangulation with Linear Interpolation, Inverse Distance to a Power, Nearest Neighbor, and Minimum Curvature, all implemented within the software Surfer®. The bathymetry which was used as reference for the DEM was obtained from nautical charts provided by the Brazilian Hydrographic Service of the Brazilian Navy and from a field survey conducted in 2005. Changes in flow velocity and free surface elevation were evaluated under three aspects: a spatial vision along three profiles perpendicular to the coast and one profile longitudinal to the coast as shown; a temporal vision from three central nodes of the grid during 30 days; a hodograph analysis of components of speed in U and V, by different tidal cycles. Small, but negligible, variations in sea surface elevation were identified. However, the differences in flow and direction of velocities were significant, depending on the DEM

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current work was developed on the dune systems of the Parque das Dunas and Barreira do Inferno. These places are located in the cities of Natal and Parnamirim (RN, Brazil), respectively. This project has the purpose of developing the deterministic model on a specific blowout at Parque das Dunas, based in the geophysical interpretations of the lines gotten with the Ground Penetration Radar and the planialtimetric acquisitions of the topographical surface of the land. Also analyses of the vulnerability/susceptibility of these dune systems had been done in relation to the human pressures. To develop its deterministic model, it is necessary to acquire inner and outer geometries of the cited blowout. In order to depict inner geometries underneath the surface are used the GPR observing the altimetric control for topographical correction of the GPR lines. As for the outer geometries, the geodesic GPS gives us the planialtimetric points (x, y and z points) with milimetric precision, resulting in high-resolution surfaces. Using interpolation methods of the planialtimetric points was possible create Digital Elevations Models (DEM´s) of these surfaces. As a result, 1,161.4 meters of GPR lines were acquired on the blowout at the Parque das Dunas and 3,735.27 meters on the blowout at the Barreira do Inferno. These lines had been acquired with a 200 MHz antenna, except the 7 and 8 lines, for which we had been used a 100 MHz antenna. The gotten data had been processed and interpreted, being possible to identify boundary surfaces of first, second and third order. The first order boundary surface is related with the contact of the rocks of the Barreiras Group with the aeolian deposits. These deposits had been divided in two groups (Group 1 and Group 2) which are related with the geometry of stratum and the dip of its stratifications. Group 1 presented stratum of sigmoidal and irregular geometries and involved bodies where the reflectors had presented dips that had varied of 20 to the 28 degrees for the Parque das Dunas blowout and of 22 to the 29 degrees for the Barreira do Inferno blowout. Usually, it was limited in the base for the first order surface and in the top for the second order surface. Group 2 presented stratum of trough, wedge or lens geometries, limited in the base for the second order vi surface, where the corresponding deposits had more shown smoothed reflectors or with dips of low angle. The Deterministic and Digital Elevation Models had been developed from the integration and interpretation of the 2D data with the GOCAD® program. In Digital Elevations Models it was possible to see, for the localities, corridor or trough-shaped blowouts. In Deterministic Model it was possible to see first and second order boundary surfaces. For the vulnerability/susceptibility of the dune systems it was applied the methodology proposal by Boderè al (1991); however the same one did not show adequate because it evaluates actual coastal dunes. Actual coastal dunes are dunes that are presented in balance with the current environmental conditions. Therefore, a new methodology was proposal which characterizes the supplying and activity sedimentary, as well as the human pressures. For the methodology developed in this work, both the localities had presented a good management. The Parque das Dunas was characterized as a relic dune system and the Barreira do Inferno was characterized as a palimpsestic dune system. Also two Thematic Maps had been elaborated for the environmental characterization of the studied dune systems, with software ArcGis 8.3, and its respective data bases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of the main meteorological mechanisms trainers and inhibitors of precipitation, and the interactions between different scales of operation, the spatial and temporal variability of the annual cycle of precipitation in the Rio Grande do Norte. Além disso, considerando as circunstâncias locais e regionais, criando assim uma base científica para apoiar ações futuras na gestão da demanda de água no Estado. Database from monthly precipitation of 45 years, ranging between 1963 and 2007, data provided by EMPARN. The methodology used to achieve the results was initially composed of descriptive statistical analysis of historical data to prove the stability of the series, were applied after, geostatistics tool for plotting maps of the variables, within the geostatistical we opted for by Kriging interpolation method because it was the method that showed the best results and minor errors. Among the results, we highlight the annual cycle of rainfall the State which is influenced by meteorological mechanisms of different spatial and temporal scales, where the main mechanisms cycle modulators are the Conference Intertropical Zone (ITCZ) acting since midFebruary to mid May throughout the state, waves Leste (OL), Lines of instability (LI), breeze systems and orographic rainfall acting mainly in the Coastal strip between February and July. Along with vortice of high levels (VCANs), Complex Mesoscale Convective (CCMs) and orographic rain in any region of the state mainly in spring and summer. In terms of larger scale phenomena stood out El Niño and La Niña, ENSO in the tropical Pacific basin. In La Niña episodes usually occur normal or rainy years, as upon the occurrence of prolonged periods of drought are influenced by EL NIÑO. In the Atlantic Ocean the standard Dipole also affects the intensity of the rainfall cycle in State. The cycle of rains in Rio Grande do Norte is divided into two periods, one comprising the regions West, Central and the Western Portion of the Wasteland Potiguar mesoregions of west Chapada Borborema, causing rains from midFebruary to mid-May and a second period of cycle, between February-July, where rains occur in mesoregions East and of the Wasteland, located upwind of the Chapada Borborema, both interspersed with dry periods without occurrence of significant rainfall and transition periods of rainy - dry and dry-rainy where isolated rainfall occur. Approximately 82% of the rainfall stations of the state which corresponds to 83.4% of the total area of Rio Grande do Norte, do not record annual volumes above 900 mm. Because the water supply of the State be maintained by small reservoirs already are in an advanced state of eutrophication, when the rains occur, act to wash and replace the water in the reservoirs, improving the quality of these, reducing the eutrophication process. When rain they do not significantly occur or after long periods of shortages, the process of eutrophication and deterioration of water in dams increased significantly. Through knowledge of the behavior of the annual cycle of rainfall can have an intimate knowledge of how it may be the tendency of rainy or prone to shortages following period, mainly observing the trends of larger scale phenomena

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the oil prospection research seismic data are usually irregular and sparsely sampled along the spatial coordinates due to obstacles in placement of geophones. Fourier methods provide a way to make the regularization of seismic data which are efficient if the input data is sampled on a regular grid. However, when these methods are applied to a set of irregularly sampled data, the orthogonality among the Fourier components is broken and the energy of a Fourier component may "leak" to other components, a phenomenon called "spectral leakage". The objective of this research is to study the spectral representation of irregularly sampled data method. In particular, it will be presented the basic structure of representation of the NDFT (nonuniform discrete Fourier transform), study their properties and demonstrate its potential in the processing of the seismic signal. In this way we study the FFT (fast Fourier transform) and the NFFT (nonuniform fast Fourier transform) which rapidly calculate the DFT (discrete Fourier transform) and NDFT. We compare the recovery of the signal using the FFT, DFT and NFFT. We approach the interpolation of seismic trace using the ALFT (antileakage Fourier transform) to overcome the problem of spectral leakage caused by uneven sampling. Applications to synthetic and real data showed that ALFT method works well on complex geology seismic data and suffers little with irregular spatial sampling of the data and edge effects, in addition it is robust and stable with noisy data. However, it is not as efficient as the FFT and its reconstruction is not as good in the case of irregular filling with large holes in the acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities