3 resultados para Inorganic chemistry

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for heteroatom substitutes of silicon, generating catalyst of the type Al-MCM-41 from two different methods of incorporation of the metal. This variation of the incorporation method of Aluminum in the structure of Si-MCM-41 was carried out through the conventional procedure, where the aluminum source was incorporated to the gel of synthesis, and the procedure post-synthesis, where the Aluminum source was incorporated in catalyst after the synthesis of Si-MCM-41. In the second way, the MCM-41 acts as a support for growth of nanocrystals of zeolite embedded in their mesoporous, resulting in hybrid MCM-41/ZSM-5 catalyst. A comparative analysis was carried through characterizations by XRD, FTIR, measures of acidity through n-butylamine adsorption for TGA, SEM-XRF and N2 adsorption. Also crystalline aluminosilicate with zeolitic structure MFI of type ZSM-5 was synthesized without using organic templates. Methodologies to the preparation of these materials are related by literature using conventionally reactants that supply oxides of necessary silicon and aluminum, as well as a template agent, and in some cases co-template. The search for new routes of preparation for the ZSM-5 aimed at, above all, the optimization of the same as for the time and the temperature of synthesis, and mainly the elimination of the use of organic templates, that are material of high cost and generally very toxic. The current study is based on the use of the H2O and Na+ cations playing the role of structural template and charge compensation in the structure. Characterizations by XRD, FTIR, SEM-XRF and N2 adsorption were also conducted for this material in order to compare the samples of ZSM-5 synthesized in the absence of template and those used industrially and synthesized using structuring

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to identify and review of the conceptual differences presented by authors of books, focusing on the theme of electronic configuration. It shows the changing concepts of electronic configuration, its implications for the cognitive development of students and their relations with the contemporary world. We identified possible obstacles in books generated in the search for simplifications, situations of different concepts of energy in the electron configuration for sublevels. For this analysis was carried out in several books, and some other general chemistry and inorganic chemistry without distinguishing between level of education, whether secondary or higher. It was found that some books for school books corroborated with higher education, others do not. To check the consistency of what was discussed, it was a survey of 30 teachers, it was found divergent points of responses, particularly with respect to the energy sublevels and authorship of the diagram which facilitated the electron configuration. It was found that the total 22professores, ie, 73,33% answered correctly on the energy sublevel more calcium (Ca) and 80%, ie, 24 teachers responded incorrectly on the iron. As for the authorship of the diagram used to facilitate the electronic configuration, we obtained 93, 33% of teachers indicated that they followed a diagram, and this was called "Diagram of Linus Pauling," teacher 01, 3,33%, indicated that the diagram was authored by Madelung and 01, 3,33%, did not respond to question. Was observed that it is necessary a more detailed assessment of ancient writings, as the search for simplifications and generalizations, not so plausible, lead to errors and consequences negative for understanding the properties of many substances. It was found that quantum mechanics combined with spectroscopic data should be part of a more thorough analysis, especially when it extends situations atoms monoelectronicpolieletrônicos to describe atoms, because factors such as effective nuclear charge and shielding factor must be taken into consideration, because interactions there is inside an atom, described by a set ofquantum numbers, sometimes not taken into account

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The processing of heavy oil produced in Brazil is an emergency action and a strategic plan to obtain self-sufficiency and economic surpluses. Seen in these terms, it is indispensable to invest in research to obtain new catalysts for obtaining light fraction of hydrocarbons from heavy fractions of petroleum. This dissertation for the degree of Doctor of Philosophy reports the materials preparation that combine the high catalytic activity of zeolites with the greater accessibility of the mesoporosity, more particularly the HZSM-5/MCM-41 hybrid, done by synthesis processes with less environmental impact than conventional ones. Innovative methodologies were developed for the synthesis of micro-mesoporous hybrid material by dual templating mechanism and from crystalline zeolitic aluminosilicate in the absence of organic template. The synthesis of hybrid with pore bimodal distribution took place from one-single organic directing agent aimed to eliminate the use of organic templates, acids of any kind or organic solvents like templating agent of crystalline zeolitic aluminosilicate together with temperature-programmed microwave-assisted, making the experimental procedures of preparation most practical and easy, with good reproducibility and low cost. The study about crystalline zeolitic aluminosilicate in the absence of organic template, especially MFI type, is based on use of H2O and Na+ cation playing a structural directing role in place of an organic template. Advanced characterization techniques such as X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Highresolution Transmission Electron Microscopy (HRTEM), Adsorption of N2 and CO2, kinetic studies by Thermogravimetric Analysis (TGA) and Pyrolysis coupled to Gas Chromatography/Mass Spectrometry (Pyrolysis-GC/MS) were employed in order to evaluate the synthesized materials. Achieve the proposed objectives, has made available a set of new methodologies for the synthesis of zeolite and hybrid micro-mesoporous material, these suitable for catalytic pyrolysis of heavy oils aimed at producing light fraction