13 resultados para Imagens aéreas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work we propose a technique that uses uncontrolled small format aerial images, or SFAI, and stereohotogrammetry techniques to construct georeferenced mosaics. Images are obtained using a simple digital camera coupled with a radio controlled (RC) helicopter. Techniques for removing common distortions are applied and the relative orientation of the models are recovered using projective geometry. Ground truth points are used to get absolute orientation, plus a definition of scale and a coordinate system which relates image measures to the ground. The mosaic is read into a GIS system, providing useful information to different types of users, such as researchers, governmental agencies, employees, fishermen and tourism enterprises. Results are reported, illustrating the applicability of the system. The main contribution is the generation of georeferenced mosaics using SFAIs, which have not yet broadly explored in cartography projects. The proposed architecture presents a viable and much less expensive solution, when compared to systems using controlled pictures
Resumo:
This work aims to develop a methodology for analysis of images using overlapping, which assists in identification of microstructural features in areas of titanium, which may be associated with its biological response. That way, surfaces of titanium heat treated for 08 (eight) different ways have been subjected to a test culture of cells. It was a relationship between the grain, texture and shape of grains of surface of titanium (attacked) trying to relate to the process of proliferation and adhesion. We used an open source software for cell counting adhered to the surface of titanium. The juxtaposition of images before and after cell culture was obtained with the aid of micro-hardness of impressions made on the surface of samples. From this image where there is overlap, it is possible to study a possible relationship between cell growth with microstructural characteristics of the surface of titanium. This methodology was efficient to describe a set of procedures that are useful in the analysis of surfaces of titanium subjected to a culture of cells
Resumo:
The present work analyses and discusses the sociability in the culture of contemporary cities focusing on the theme of fear and violence in the daily life of squares in the city of João Pessoa-PB. We analyse the relations between places in town and make correlations of history and setting of neighborhoods with the process of urban growth, including recent interventions of public authorities in their public spaces. We observed in this dynamics social attitudes and actions that range from a desired peaceful coexistence to social exclusion. Thus, we discuss, based upon the imaginary vision, that the squares exist as a locus of equality, citizenship and political, and, also, as a space for everyone, despite the existence of symbolic forces working towards segregation and privatization, ruled in fear and violence. We aimed to investigate the different symbolic logics from the issue of fear and violence that allows the exclusion and the inclusion of groups and individuals in the quotidian use of public spaces of contemporary cities. We believe that the social action is demarcated by violence ant its corollary, the social fear, and operates based on the logic of a relational game always confrontational but experienced in different forms according to the social segment or group under study. We used a qualitative and quantitative methodology relating data and statistical analysis with categories created for the understanding of subjective factors. Our analyses combined ethnographic elements, periodics research and images of the city and its spaces, with the contribution of a survey that allowed comparisions of five squares of neighborhood based on the daily life under investigation. Our proposal was to deepen the investigations related to the public space of contemporary cities, expanding the look on João Pessoa and its cultural dynamics with an analysis of discourses, images, the collective imaginary and the social appropriation of the spaces based on fear and violence. The research accomplished in different areas and the analysis of images and speeches published in newspapers reports, books, advertising etc. allowed the approach of differentiated patterns of sociability in the same urban process. The neighborhoods in study are indeed spatially and economically distanced and the process of creation and construction of squares occurred in very different ways in the respective location. We defend the thesis that neighborhood community squares provide reinvigorated spaces and public spheres in the urban process and in the dynamics of sociability in the cities. These squares are also social spaces par excellence for the perception of the logic of individualism and segregation so marked by fear and violence in contemporary cities
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Sistema inteligente para detecção de manchas de óleo na superfície marinha através de imagens de SAR
Resumo:
Oil spill on the sea, accidental or not, generates enormous negative consequences for the affected area. The damages are ambient and economic, mainly with the proximity of these spots of preservation areas and/or coastal zones. The development of automatic techniques for identification of oil spots on the sea surface, captured through Radar images, assist in a complete monitoring of the oceans and seas. However spots of different origins can be visualized in this type of imaging, which is a very difficult task. The system proposed in this work, based on techniques of digital image processing and artificial neural network, has the objective to identify the analyzed spot and to discern between oil and other generating phenomena of spot. Tests in functional blocks that compose the proposed system allow the implementation of different algorithms, as well as its detailed and prompt analysis. The algorithms of digital image processing (speckle filtering and gradient), as well as classifier algorithms (Multilayer Perceptron, Radial Basis Function, Support Vector Machine and Committe Machine) are presented and commented.The final performance of the system, with different kind of classifiers, is presented by ROC curve. The true positive rates are considered agreed with the literature about oil slick detection through SAR images presents
Resumo:
In this work, we propose a multi agent system for digital image steganalysis, based on the poliginic bees model. Such approach aims to solve the problem of automatic steganalysis for digital media, with a case study on digital images. The system architecture was designed not only to detect if a file is suspicious of covering a hidden message, as well to extract the hidden message or information regarding it. Several experiments were performed whose results confirm a substantial enhancement (from 67% to 82% success rate) by using the multi-agent approach, fact not observed in traditional systems. An ongoing application using the technique is the detection of anomalies in digital data produced by sensors that capture brain emissions in little animals. The detection of such anomalies can be used to prove theories and evidences of imagery completion during sleep provided by the brain in visual cortex areas
Resumo:
Remote sensing is one technology of extreme importance, allowing capture of data from the Earth's surface that are used with various purposes, including, environmental monitoring, tracking usage of natural resources, geological prospecting and monitoring of disasters. One of the main applications of remote sensing is the generation of thematic maps and subsequent survey of areas from images generated by orbital or sub-orbital sensors. Pattern classification methods are used in the implementation of computational routines to automate this activity. Artificial neural networks present themselves as viable alternatives to traditional statistical classifiers, mainly for applications whose data show high dimensionality as those from hyperspectral sensors. This work main goal is to develop a classiffier based on neural networks radial basis function and Growing Neural Gas, which presents some advantages over using individual neural networks. The main idea is to use Growing Neural Gas's incremental characteristics to determine the radial basis function network's quantity and choice of centers in order to obtain a highly effective classiffier. To demonstrate the performance of the classiffier three studies case are presented along with the results.
Resumo:
This work embraces the application of Landsat 5-TM digital images, comprising August 2 1989 and September 22 1998, for temporal mapping and geoenvironmental analysis of the dynamic of Piranhas-Açu river mouth, situated in the Macau (RN) region. After treatment using several digital processing techniques (e.g. colour composition in RGB, ratio of bands, principal component analysis, index methods, among others), it was possible to generate several image products and multitemporal maps of the coastal morphodynamics of the studied area. Using the image products it was possible the identification and characterization of the principal elements of interest (vegetation, soil, geology and water) in the surface of the studied area, associating the spectral characteristics of these elements to that presented by the image products resulting of the digital processing. Thus, it was possible to define different types of soils: Amd, AQd6, SK1 and LVe4; vegetation grouping: open arboreal-shrubby caatinga, closed arborealshrubby caatinga, closed arboreal caatinga, mangrove vegetation, dune vegetation and areas predominately constituted by juremas; geological units: quaternary units beach sediments, sand banks, dune flats, barrier island, mobile dunes, fixed dunes, alluvium, tidal and inundation flats, and sandy facies of the Potengi Formation; tertiary-quaternary units Barreiras Formation grouped to the clayey facies of the Potengi Formation, Macau Formation grouped to the sediments of the Tibau Formation; Cretaceous units Jandaíra Formation; moreover it was to identify the sea/land limit, shallow submersed areas and suspended sediments. The multitemporal maps of the coastal morphodynamics allowed the identification and a semi-quantitative evoluation of regions which were submitted to erosive and constructive processes in the last decade. This semi-quantitative evoluation in association with an geoenvironmental characterization of the studied area are important data to the elaboration of actions that may minimize the possible/probable impacts caused by the implantation of the Polo Gas/Sal and to the monitoring of areas explorated by the petroleum and salt industries
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
Synthesis of heterocyclic compounds, as quinoxaline derivatives, has being shown to be relevant and promissor due to expressive applications in biological and technological areas. This work was dedicated to the synthesis, characterization and reactivity of quinoxaline derivatives in order to obtain new chemosensors. (L)-Ascorbic acid (1) and 2,3-dichloro-6,7- dinitroquinoxalina (2) were explored as synthetic precursors. Starting from synthesis of 1 and characterization of compounds derived from (L)-ascorbic acid, studies were performed investigating the application of products as chemosensors, in which compound 36 demonstrated selective affinity for Cu2+ íons in methanolic solution, by naked-eye (colorimetric) and UVvisible analyses. Further, initial analysis suggests that 39 a Schiff’s base derived from 36 also presents this feature. Five quinoxaline derivatives were synthesized from building block 2 through nucleophilic aromatic substitution by aliphatic amines, in which controlling the experimental conditions allows to obtain both mono- and di-substituted derivatives. Reactivity studies were carried out with two purposes: i) investigate the possibility of 47 compound being a chemosensor for anion, based on its interaction with sodium hydroxide in DMSO, using image analysis and UV-visible spectroscopy; ii) characterize kinetically the conversion of compound 44 into 46 based on RGB and multivariate image analysis from TLC data, as a simple and inexpensive qualitative and quantitative tool.
Resumo:
Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.
Resumo:
Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.
Resumo:
This work aims to develop a methodology for analysis of images using overlapping, which assists in identification of microstructural features in areas of titanium, which may be associated with its biological response. That way, surfaces of titanium heat treated for 08 (eight) different ways have been subjected to a test culture of cells. It was a relationship between the grain, texture and shape of grains of surface of titanium (attacked) trying to relate to the process of proliferation and adhesion. We used an open source software for cell counting adhered to the surface of titanium. The juxtaposition of images before and after cell culture was obtained with the aid of micro-hardness of impressions made on the surface of samples. From this image where there is overlap, it is possible to study a possible relationship between cell growth with microstructural characteristics of the surface of titanium. This methodology was efficient to describe a set of procedures that are useful in the analysis of surfaces of titanium subjected to a culture of cells