3 resultados para Hierarchical partitioning analysis
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%
Resumo:
Heavy metals can cause problems of human poisoning by ingestion of contaminated food, and the environment, a negative impact on the aquatic fauna and flora. And for the presence of these metals have been used for aquatic animals biomonitoramento environment. This research was done in order to assess the environmental impact of industrial and domestic sewage dumped in estuaries potiguares, from measures of heavy metals in mullet. The methods used for these determinations are those in the literature for analysis of food and water. Collections were 20 samples of mullet in several municipality of the state of Rio Grande do Norte, from the estuaries potiguares. Were analyzed the content of humidity, ash and heavy metals. The data were subjected to two methods of exploratory analysis: analysis of the main components (PCA), which provided a multivariate interpretation, showing that the samples are grouped according to similarities in the levels of metals and analysis of hierarchical groupings (HCA), producing similar results. These tests have proved useful for the treatment of the data producing information that would hardly viewed directly in the matrix of data. The analysis of the results shows the high levels of metallic species in samples Mugil brasiliensis collected in Estuaries /Potengi, Piranhas/Açu, Guaraíra / Papeba / Arês and Curimataú
Resumo:
The aim of the present study was to trace the mortality profile of the elderly in Brazil using two neighboring age groups: 60 to 69 years (young-old) and 80 years or more (oldest-old). To do this, we sought to characterize the trend and distinctions of different mortality profiles, as well as the quality of the data and associations with socioeconomic and sanitary conditions in the micro-regions of Brazil. Data was collected from the Mortality Information System (SIM) and the Brazilian Institute of Geography and Statistics (IBGE). Based on these data, the coefficients of mortality were calculated for the chapters of the International Disease Classification (ICD-10). A polynomial regression model was used to ascertain the trend of the main chapters. Non-hierarchical cluster analysis (K-Means) was used to obtain the profiles for different Brazilian micro-regions. Factorial analysis of the contextual variables was used to obtain the socio-economic and sanitary deprivation indices (IPSS). The trend of the CMId and of the ratio of its values in the two age groups confirmed a decrease in most of the indicators, particularly for badly-defined causes among the oldest-old. Among the young-old, the following profiles emerged: the Development Profile; the Modernity Profile; the Epidemiological Paradox Profile and the Ignorance Profile. Among the oldest-old, the latter three profiles were confirmed, in addition to the Low Mortality Rates Profile. When comparing the mean IPSS values in global terms, all of the groups were different in both of the age groups. The Ignorance Profile was compared with the other profiles using orthogonal contrasts. This profile differed from all of the others in isolation and in clusters. However, the mean IPSS was similar for the Low Mortality Rates Profile among the oldest-old. Furthermore, associations were found between the data quality indicators, the CMId for badly-defined causes, the general coefficient of mortality for each age group (CGMId) and the IPSS of the micro-regions. The worst rates were recorded in areas with the greatest socioeconomic and sanitary deprivation. The findings of the present study show that, despite the decrease in the mortality coefficients, there are notable differences in the profiles related to contextual conditions, including regional differences in data quality. These differences increase the vulnerability of the age groups studied and the health iniquities that are already present.