5 resultados para HRV

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The myotonic dystrophy (MD) is a multisystem neuromuscular disease that can affect the respiratory muscles and heart function, and cause impairment in quality of life. Objectives: Investigate the changes in respiratory muscle strength, health-related quality of life (HRQoL) and autonomic modulation heart rate (HR) in patients with MD. Methods: Twenty-three patients performed assessment of pulmonary function, sniff nasal inspiratory pressure (SNIP), the maximal inspiratory (MIP) and expiratory (MEP) pressure, and of HRQoL (SF-36 questionnaire). Of these patients, 17 underwent assessment of heart rate variability (HRV) at rest, in the supine and seated positions. Results: The values of respiratory muscle strength were 64, 70 and 80% of predicted for MEP, MIP, and SNIP, respectively. Significant differences were found in the SF-36 domains of physical functioning (58.7 ± 31,4 vs. 84.5 ± 23, p<0.01) and physical problems (43.4 ± 35.2 vs. 81.2 ± 34, p<0.001) when patients were compared with the reference values. Single linear regression analysis demonstrated that MIP explains 29% of the variance in physical functioning, 18% of physical problems and 20% of vitality. The HRV showed that from supine position to seated, HF decreased (0.43 x 0.30), and LF (0.57 x 0.70) and the LF/HF ratio (1.28 x 2.22) increased (p< 0.05). Compared to healthy persons, LF was lower in both male patients (2.68 x 2.99) and women (2.31 x 2.79) (p< 0.05). LF / HF ratio and LF were higher in men (5.52 x 1.5 and 0.8 x 0.6, p <0.05) and AF in women (0.43 x 0.21) (p< 0.05). There was positive correlation between the time of diagnosis and LF / HF ratio (r = 0.7, p <0.01). Conclusions: The expiratory muscle strength was reduced. The HRQoL was more impaired on the physical aspects and partly influenced by changes in inspiratory muscle strength. The HRV showed that may be sympathetic dysfunction in autonomic modulation of HR, although with normal adjustment of autonomic modulation during the change of posture. The parasympathetic modulation is higher in female patients and sympathetic tends to increase in patients with longer diagnosis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Transcranial Direct Current Stimulation (tDCS) has been used in studies for the treatment of chronic pain, but their effects on the autonomic nervous system (ANS) are non-existent. Therefore, the need for studies is of fundamental importance, as these individuals have autonomic imbalance and the intensity of this is dependent on the degree and level of injury. Objective: We investigated the effect of tDCS on the ANS in people with spinal cord injury (SCI) with different degrees and levels of injury. Methods: Randomized, placebo-controlled, double-blind, applied anodal tDCS or sham on the primary motor cortex (M1), bilaterally. The subjects (lower incomplete injury, n = 7; lower complete injury, n = 9; and high complete thoracic injury, n = 3) visited the laboratory three times and received active or sham tDCS for 13min. The heart rate variability (HRV) was measured before, during and after stimulation and analyzed the variables LF, HF and LF / HF. Results: The tDCS modulated the ANS in different ways among the groups. In individuals with SCI high complete thoracic the tDCS did not change the HRV. However, for individuals with SCI low incomplete, tDCS changed the HRV in order to increase sympathetic (LF, p = 0.046) and reduced parasympathetic (HF, p = 0.046). For individuals SCI low complete to tDCS changed the HRV reduction sympathetic (LF, p = 0.017) and increased parasympathetic (HF, p = 0.017). Conclusions: The present study suggests that anodal tDCS applied on the motor cortex bilaterally could modulate the ANS balance in people with spinal cord injury and that this effect is dependent on the degree and level of injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The circadian system has neural projections for the Autonomic Nervous System (ANS), directly interfering with sympathetic-vagal modulation of the cardiovascular system. Disturbances in the circadian system, such as phase changes in light-dark cycle (LD), has been related to the risk of development of cardiovascular diseases due to increased sympathetic tone and reduction o Heart Rate Variability (HRV - RR intervals). Purpose: Investigate the interaction between Circadian Timing System and cardiac autonomic control in rats. Materials and methods: We used 18 Wistar rats (♀, age = 139.9 ± 32.1 days, weight = 219.5 ± 16.2 g), divided into three distinct groups: Control (CG), phase delay of 6h (GDe) and phase advance of 6h (GAd). Three animals were excluded during data collection (CG/GDe/GAd - n=5). Telemeters were surgically implanted in each animal for continuous acquisition of electrocardiographic (ECG) signals (duration of 21 days in the CG and 28 days in GDe/ GAd). A LD cycle was established 12h: 12h, beginning of light at18:00h and dark at 06:00h. The animals remained in the same CG LD cycle throughout the experimental period, while, on the 14th day of registration, the GDe and GAd underwent a delay and an advance in 6h, respectively. Throughout the experimental period, the locomotor activity (LA), the mean heart rate (mHR) and variables related to iRR [mean RR (mRR), SDNN, RMSSD, LF, HF and LF/ HF ratio ] were recorded. All data were analyzed in blocks of 3 and 7 days, for the presence of circadian rhythm, values of Cosinor - mesor, amplitude and acrophase (paired t test), phase relationship, differences between light and dark (t test independent), averages every 30 minutes along each time series (two-way ANOVA with post hoc Bonferroni). The data block B1,M1 and M2 in CG served as benchmarks for comparisons between series of analysis of the GAT/GAV. Results: We observed circadian rhythmicity in the variables LA, mRR and mFC(p<0.01). mRR and mFC showed phase relationship with the LA in all three groups, being less stable in GAd. In the CG, no significant differences between blocks were found in any of the analyzes(p>0.05). Among the 7 day blocks, there was a significant reduction in mRR(p=0.04) and mFC(p=0.03) in GDe and significant reduction in HF mean(p=0.02) in GAd; and between 3 day blocks, a significant increase of LF/HF(p= 0.04) in the GDe; besides mRR(p=0.03), SDNN(p=0.04), RMSSD (p=0.04), LF (p=0.01) and HF(p=0.02) significant increase in the GAd. It was found that the differences between the means of the mRR, LA and mFC in light and dark phases were not significant after phase changes in some of the blocks/moments (GDe and GAd). No significant results were found when comparing rhythmic variables means every 30 minutes over the blocks, except for a significant decrease in mRR at the middle of the dark phase (B2) and the start of light phase (B3) - (p<0.01). Conclusion: phase advances and delays (6h) altered cardiac autonomic control in the experimental groups by temporarily HRV decrease. Phase advances apparently had greater negative interference in this process, in relation to the phase delays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Slow abdominal breathing (SAB) stimulates baroreflex and generates respiratory sinus arrhythmia, changing cardiovascular, emotional and cerebral systems acute and chronically. However, although meditative practices have been receiving increasingly attention in the last years, there is no agreement on the neurophysiological changes underlying them, mainly because of the lack of topographical pieces of information. Purpose: We aimed to analyze the acute effect of SAB on brain activity, emotional and cardiovascular responses in untrained subjects in meditative techniques. Methods: Seventeen healthy adults’ men were assessed into two different sessions in a random and crossed order. Into experimental session, they breathed in 6 cycles/minute and in control session they kept breathing in normal rate, both for 20 minutes. xi Before, during, and after each session we assessed brain activity using electroencephalography (EEG), anxiety, mood, heart rate variability (HRV) and blood pressure. The sLORETA software was used to analyze EEG data for source localization of brain areas in which activity was changed. Results: The sLORETA showed that beta band frequency was reduced in frontal gyrus (P<0.01) and anterior cingulate cortex (P<0.05) both during and after SAB (P<0.05) compared to the moment before it. There was no change in brain activity in control session. Additionally, a two-way repeated measures ANOVA showed that there was no effect on anxiety (P>0.8) and mood (P>0.08). There were improvements in HRV (P<0.03), with increased RR interval and decreased HR after SAB, as well as increased SDNN, RMSSD, pNN50, low frequency, LF/HF ratio, and total power during it, with no changes in SBP and DBP. Conclusions: We conclude that SAB is able to change brain activity in areas responsible for emotional processing, even without behavioral changes. Furthermore, SAB improves HRV and does not change blood pressure in normotensive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-intensity interval exercise has been described as an option for increasing physical activity and its use also being suggested in the therapeutic management of many conditions such as diabetes mellitus and heart failure. However, the knowledge of its physiological effects and parameters that can assure greater safety for interval exercise prescription; especially its effect on short- and medium-term (24 hours after exercise) exercise recovery, need to be clarified. This study objective was to evaluate the effect of continuous and interval aerobic exercise on the cardiac autonomic control immediate and medium term (24 hours), by assessing heart rate variability (HRV). The present study is a randomized crossover clinical trial in which healthy young individuals with low level of physical activity had the VFC 24 hours measured by a heart rate sensor and portable accelerometer (3D eMotion HRV, Kuopio, Finland) before and after continuous aerobic exercise (60-70% HR max, 21 min.) and interval exercise (cycle 1 min. 80-90% HR max, 2 min. at 50-60% HR max, duration 21 min.). HRV was measured in the time and frequency domain and the sympathovagal balance determined by the ratio LF / HF. Nonlinear evaluation was calculated by Shannon entropy. The data demonstrated delayed heart rate recovery immediate after exercise and lower HR after 24 hours compared to pre intervention values, especially in the interval exercise group. There was a tendency to higher predominance and representatives index values of sympathetic stimulation during the day in interval exercise group; however, without statistical significance. The study results help to clarify the effects of interval exercise on the 24 hours following interval exercise, setting parameters for prescription and for further evaluation of groups with metabolic and cardiovascular diseases.