12 resultados para H-Infinity Time-Varying Adaptive Algorithm

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predictive control technique has gotten, on the last years, greater number of adepts in reason of the easiness of adjustment of its parameters, of the exceeding of its concepts for multi-input/multi-output (MIMO) systems, of nonlinear models of processes could be linearised around a operating point, so can clearly be used in the controller, and mainly, as being the only methodology that can take into consideration, during the project of the controller, the limitations of the control signals and output of the process. The time varying weighting generalized predictive control (TGPC), studied in this work, is one more an alternative to the several existing predictive controls, characterizing itself as an modification of the generalized predictive control (GPC), where it is used a reference model, calculated in accordance with parameters of project previously established by the designer, and the application of a new function criterion, that when minimized offers the best parameters to the controller. It is used technique of the genetic algorithms to minimize of the function criterion proposed and searches to demonstrate the robustness of the TGPC through the application of performance, stability and robustness criterions. To compare achieves results of the TGPC controller, the GCP and proportional, integral and derivative (PID) controllers are used, where whole the techniques applied to stable, unstable and of non-minimum phase plants. The simulated examples become fulfilled with the use of MATLAB tool. It is verified that, the alterations implemented in TGPC, allow the evidence of the efficiency of this algorithm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postsurgical complication of hypertension may occur in cardiac patients. To decrease the chances of complication it is necessary to reduce elevated blood pressure as soon as possible. Continuous infusion of vasodilator drugs, such as sodium nitroprusside (Nipride), would quickly lower the blood pressure in most patients. However, each patient has a different sensitivity to infusion of Nipride. The parameters and the time delays of the system are initially unknown. Moreover, the parameters of the transfer function associated with a particular patient are time varying. the objective of the study is to develop a procedure for blood pressure control i the presence of uncertainty of parameters and considerable time delays. So, a methodology was developed multi-model, and for each such model a Preditive Controller can be a priori designed. An adaptive mechanism is then needed for deciding which controller should be dominant for a given plant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite resins have been subjected to structural modifications aiming at improved optical and mechanical properties. The present study consisted in an in vitro evaluation of the staining behavior of two nanohybrid resins (NH1 and NH2), a nanoparticulated resin (NP) and a microhybrid resin (MH). Samples of these materials were prepared and immersed in commonly ingested drinks, i.e., coffee, red wine and acai berry for periods of time varying from 1 to 60 days. Cylindrical samples of each resin were shaped using a metallic die and polymerized during 30 s both on the bottom and top of its disk. All samples were polished and immersed in the staining solutions. After 24 hours, three samples of each resin immersed in each solution were removed and placed in a spectrofotome ter for analysis. To that end, the samples were previously diluted in HCl at 50%. Tukey tests were carried out in the statistical analysis of the results. The results revealed that there was a clear difference in the staining behavior of each material. The nanoparticulated resin did not show better color stability compared to the microhybrid resin. Moreover, all resins stained with time. The degree of staining decreased in the sequence nanoparticulated, microhybrid, nanohybrid MH2 and MH1. Wine was the most aggressive drink followed by coffee and acai berry. SEM and image analysis revealed significant porosity on the surface of MH resin and relatively large pores on a NP sample. The NH2 resin was characterized by homogeneous dispersion of particles and limited porosity. Finally, the NH1 resin depicted the lowest porosity level. The results revealed that staining is likely related to the concentration of inorganic pa rticles and surface porosity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex network analysis is a powerful tool into research of complex systems like brain networks. This work aims to describe the topological changes in neural functional connectivity networks of neocortex and hippocampus during slow-wave sleep (SWS) in animals submited to a novel experience exposure. Slow-wave sleep is an important sleep stage where occurs reverberations of electrical activities patterns of wakeness, playing a fundamental role in memory consolidation. Although its importance there s a lack of studies that characterize the topological dynamical of functional connectivity networks during that sleep stage. There s no studies that describe the topological modifications that novel exposure leads to this networks. We have observed that several topological properties have been modified after novel exposure and this modification remains for a long time. Major part of this changes in topological properties by novel exposure are related to fault tolerance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet coding has emerged as an alternative coding technique to minimize the fading effects of wireless channels. This work evaluates the performance of wavelet coding, in terms of bit error probability, over time-varying, frequency-selective multipath Rayleigh fading channels. The adopted propagation model follows the COST207 norm, main international standards reference for GSM, UMTS, and EDGE applications. The results show the wavelet coding s efficiency against the inter symbolic interference which characterizes these communication scenarios. This robustness of the presented technique enables its usage in different environments, bringing it one step closer to be applied in practical wireless communication systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite resins have been subjected to structural modifications aiming at improved optical and mechanical properties. The present study consisted in an in vitro evaluation of the staining behavior of two nanohybrid resins (NH1 and NH2), a nanoparticulated resin (NP) and a microhybrid resin (MH). Samples of these materials were prepared and immersed in commonly ingested drinks, i.e., coffee, red wine and acai berry for periods of time varying from 1 to 60 days. Cylindrical samples of each resin were shaped using a metallic die and polymerized during 30 s both on the bottom and top of its disk. All samples were polished and immersed in the staining solutions. After 24 hours, three samples of each resin immersed in each solution were removed and placed in a spectrofotome ter for analysis. To that end, the samples were previously diluted in HCl at 50%. Tukey tests were carried out in the statistical analysis of the results. The results revealed that there was a clear difference in the staining behavior of each material. The nanoparticulated resin did not show better color stability compared to the microhybrid resin. Moreover, all resins stained with time. The degree of staining decreased in the sequence nanoparticulated, microhybrid, nanohybrid MH2 and MH1. Wine was the most aggressive drink followed by coffee and acai berry. SEM and image analysis revealed significant porosity on the surface of MH resin and relatively large pores on a NP sample. The NH2 resin was characterized by homogeneous dispersion of particles and limited porosity. Finally, the NH1 resin depicted the lowest porosity level. The results revealed that staining is likely related to the concentration of inorganic pa rticles and surface porosity