2 resultados para Guided Tissue Regeneration

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. Several applications of the study of EC can be emphasized the therapeutic techniques such as guided bone regeneration by implantation of EC in the affected site, without the need for bone grafts, using titanium as a vehicle. The process of cryopreservation is essential for the maintenance of cell cultures, since the cell line is frozen, it can be maintained in liquid nitrogen for an indefinite period and then thawed for therapeutic or experimental purposes. The aim of this study was to isolate a population of MSCs derived from the subendothelium of the umbilical vein human (MSCs-SUVH) to assess cytogenetic analysis by the possibility of appearance of chromosomal changes in two different situations: MSCs-SUVH regarding the process of cryopreservation and MSCs-SUVH grown on the surface of titanium. Flow cytometry analysis revealed that, this cell population was positive for the markers CD29, CD73 and CD90, but there was no expression of hematopoietic lineage markers, such as CD14, CD34 and CD45 and demonstrated capacity for osteogenic differentiation. The chromosomes obtained from the primary culture of MSCs-SUVH were analyzed by GTW banding technique, and results are described as guidelines to ISCN 2005. There was not the emergence of clonal chromosomal changes in the MSCs-SUVH in different situations analyzed. However one of the strings presented a balanced paracentric inversion, probably a cytogenetic constitutional alterations, which was present before and after the experimental situations that the MSCs-SUVH was submitted

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low level laser irradiation (LLLI) has been used in Dentistry to promote wound healing and tissue regeneration. The literature shows a positive effect of LLLI on cell proliferation, but little is known about their effectiveness in promoting stem cells proliferation. The aim of this study was to evaluate the effect of LLLI on the proliferative rate of human periodontal ligament stem cells. Extracts of periodontal ligament were isolated from two third molars removed by surgical and/or orthodontic indication. After enzymatic digestion, the cells were grown in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. On the third subculture, the cells were irradiated with a InGaAlP-diode laser, using two different energy densities (0,5J/cm 2 - 16 seconds and 1,0J/cm² - 33 seconds), with wavelength of 660nm and output power of 30mW. A new irradiation, using the same parameters, was performed 48h after the first. A control group (non irradiated) was kept under the same experimental culture conditions. The Trypan blue exclusion test and the mitochondrial activity of the cells measured by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] essay were performed to assess the cell proliferation in the intervals of 0, 24, 48 e 72 h after irradiation. The data of cell counts were submitted to nonparametrical statistical tests (Kruskal-Wallis and Mann-Whitney), considering a confidence interval of 95%. DAPI (4 -6-Diamidino-2-phenylindole) staining of the cells was performed at 72h interval to evaluate possible nuclear morphological changes induced by LLLI. The results of this study show that the energy density of 1,0 J/cm² promoted greater cell proliferation compared to the other groups (control and 0,5 J/cm²) at intervals of 48 and 72h. The mitochondrial activity measured by MTT essay showed similar results to the Trypan blue cell counting test. The group irradiated with 1,0J/cm² exhibited a significantly higher MTT activity in the intervals of 48 and 72h, when compared to the group irradiated with 0,5J/cm². No nuclear morphological change was observed in the cells from the three groups studied. It is concluded that LLLI has stimulatory effects on the proliferation of human periodontal ligament stem cells. Therefore, the use of laser irradiation in this cell type may be important to promote future advances in periodontal regeneration