140 resultados para Geometria euclidiana
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This dissertation is a research based on the Meaningful Learning Theory, with students from the second year of High School, in the city named Capinzal do Norte, state of Maranhão. The pedagogic approach of this research focuses on what to do and how to do so students can better grasp knowledge inherent to the Euclidean Special Geometry in a more meaningful and changing way, also that information may be kept longer in their brain, so it can last longer in the present and future. The methodological strategy adopted was the research-action, followed by the constant observance of a researcher on the matter with the purpose to ensure consistent results, which come from the use of a variety of data collector instruments, such as: Concept Maps, manipulatives, educational softwares and application of evaluative tests, besides the observations made throughout the process of investigation and the diagnosis itself. It is all due to the fact that we rely on the premise that knowledge is assimilated in particular and idiosyncratic ways, which means each and every student learns in different ways and in different periods of time. That is why it is so important to develop diversified methodologies to the same subject. This research adds to the other ones related to the theoretical frameworks of the Meaningful Learning Theory, of Concept Maps, of the use of technology on the educational process and of manipulatives, which purpose is to connect their common dots. This pedagogical intervention also focuses on the construction of the educational orientations with applicability directly on class, directed specially by the Mathematics teacher of the basic education, who might use them during your teaching practice. Such guidelines established here as an educational product aim to follow the Theory's assumptions that serves as basis to this research, thus becoming an educational element with a relevant significance. The results, with which we are faced, proved overwhelming to the proposed objectives in terms of learning, which were evident in the construction of Conceptual Maps, as well as in the use of Concrete Materials, in addition to serving as a motivational element to participating students of research. The results obtained are indeed reliable in terms of learning, considered the expected goals, and made us certain that the way we have approached the subject is consistent with a holistic education and that at the same time values the tiniest details, which are fundamental to all the learning-teaching process.
Resumo:
This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)
Resumo:
The main goal of the present study is to propose a methodological approach to the teaching of Geometry and, in particular, to the construction of the concepts of circle (circumference) and ellipse by 7th and 8th grade students. In order to aid the students in the construction of these concepts, we developed a module based on mathematical modeling, and both Urban Geometry (Taxicab Geometry) and Isoperimetric Geometry. Our analysis was based on Jean Piaget's Equilibrium Theory. Emphasizing the use of intuition based on accumulated past experiences, the students were encouraged to come up with a hypothesis, try it out, discuss it with their peers, and derive conclusions. Although the graphs of circles and ellipses assume different shapes in Urban and Isoperimetric Geometry than they do in the standard Euclidian Geometry, their definitions are identical regardless of the metric used. Thus, by comparing the graphs produced in the different metrics, the students were able to consolidate their understanding of these concepts. The intervention took place in a series of small group activities. At the end of the study, the 53 seventh grade and the 55 eighth grade students had a better understanding of the concepts of circle and ellipse
Resumo:
In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf
Resumo:
As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy
Resumo:
A tese tem como objetivo descrever e analisar características e princípios dos padrões das rendas de bilro de modo a estabelecer relações com a Matemática escolar, principalmente, no que se refere aos tópicos como Geometria, simetria, isometria, área, perímetro, entre outros. Desse modo, elaboramos atividades didáticas, com base na Matemática explorada nos padrões da criação da renda de bilro, visando concretizar um exercício investigatório nas aulas de Matemática, de modo que, sejam estabelecidas relações conceituais entre a prática investigada e os conteúdos da Matemática escolar. Para satisfazer esses objetivos, buscamos apoio metodológico na pesquisa bibliográfica, do tipo documental em catálogos como o da Professora Valdelice Girão (1984) e também o de Dawson (1984). Realizamos também a pesquisa empírica durante as visitas ao Museu do Ceará e ao Centro das Rendeiras na Prainha, em Aquiraz, no Ceará. Para realizar as atividades didáticas, apoiamo-nos em Mendes (2009). Consideramos relevante essa abordagem de ensino porque pressupõe a experiência direta do aprendiz com situações reais vivenciadas, nas quais a abordagem instrucional é centrada no aluno. Desse modo, concluímos que para o ensino de conteúdos como Geometria, simetria, isometria, relação entre perímetro e área, entre outros que são abordados na Educação Básica, os modelos decorrentes da criação renda de bilro e outros modelos já descritos na tradição cearense podem ser usados como artefato cultural na criação de atividades didáticas
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
Frequency Selective Surfaces (FSS) are periodic structures in one or two dimensions that act as spatial filters, can be formed by elements of type conductors patches or apertures, functioning as filters band-stop or band-pass respectively. The interest in the study of FSS has grown through the years, because such structures meet specific requirements as low-cost, reduced dimensions and weighs, beyond the possibility to integrate with other microwave circuits. The most varied applications for such structures have been investigated, as for example, radomes, antennas systems for airplanes, electromagnetic filters for reflective antennas, absorbers structures, etc. Several methods have been used for the analysis of FSS, among them, the Wave Method (WCIP). Are various shapes of elements that can be used in FSS, as for example, fractal type, which presents a relative geometric complexity. This work has as main objective to propose a simplification geometric procedure a fractal FSS, from the analysis of influence of details (gaps) of geometry of the same in behavior of the resonance frequency. Complementarily is shown a simple method to adjust the frequency resonance through analysis of a FSS, which uses a square basic cell, in which are inserted two reentrance and dimensions these reentrance are varied, making it possible to adjust the frequency. For this, the structures are analyzed numerically, using WCIP, and later are characterized experimentally comparing the results obtained. For the two cases is evaluated, the influence of electric and magnetic fields, the latter through the electric current density vector. Is realized a bibliographic study about the theme and are presented suggestions for the continuation of this work
Resumo:
This is work itself insert in the mathematics education field of the youth and adult education to aim to practitioners of the educational action into the mathematics area performing to with this is teaching kind, adopting to as parameter the Mathematics Molding approach. The motive of the research is to draw up a application proposal of the molding mathematics as teaching and learning geometry alternative in the youth and adult education. The research it develops in three class of the third level (series 5th and 6th) of he youth and adults education in the one school municipal from the Natal outskirts. Its have qualitative nature with participating observation approach, once performing to directly in to research environment as a mathematics teacher of those same classes. We are used questionnaires, lesson notes and analyses of the officials documents as an basis of claim instruments. The results indicates that activity used the mathematic moldings were appreciated the savoir-faire of the student in to knowledge construction process, when search develop to significant learning methods, helping to student build has mathematics connections with other knowledge areas and inside mathematics himself, so much that enlarges your understanding and assist has in your participation in the other socials place, over there propitiate to change in student and teacher posture with relation to mathematic classroom dynamics
Resumo:
This paper aims to build a notebook of activities that can help the teacher of elementary school mathematics. Topics covered are arithmetic and geometry and the activities proposed here were developed aiming print them a multicultural character. We take as a base line developed by Claudia Zaslavsky multiculturalism and reflected in his books "Games and activities worldwide" and "More games and activities worldwide." We structure our work around four themes: the symbol of the Olympic Games, the pyramids of Egypt, the Russian abacus abacus and Chinese. The first two themes allow you to explore basic concepts of geometry while the latter two themes allow us to explore numerical notation and arithmetic operations
Resumo:
This work presents a proposal for introducing the teaching of Geometry Space study attempts to demonstrate that the use of manipulatives as a teaching resource can be an alternative learning facilitator for fixing the primitive concepts of geometry, the postulates and theorems, position relationships between points, lines and planes and calculating distances. The development makes use of a sequence of activities aimed at ensuring that students can build a more systematic learning and these are divided into four steps
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This study focuses on the potential of several techniques used to identify depositional geometries and paleogeographical investigation on the SW border of the Potiguar Basin. Three areas were selected for an integrated geological, geophysical and geochemistry study. The main used techniques were facies analysis, remote sensing,ground penetrating radar (GPR) and gamma-ray in outcrops, as well as petrographic microscope observations and the using of scanning eletronic microscopic (SEM), and Carbon and Oxygen Isotopic study in the carbonate tufa. These methodological approaches were very efficient in the facies analysis of 2D geometries. The GPR profiles carried out in Quixeré identified important geological reflectors which allowed to the identification of depositional geometries of tufa. However, GPR profiles were not able to identify geological reflectors in the Apodi and Olho d´Água da Bica outcrops. Gammaray profiles also presented good results, which justify their use in 1D and 2D geometric analysis. Carbon and Oxygen Isotopic analyses were also used to investigate paleoenvironmental setting of tufa deposits. It is important to remark the excellent resultsof GRP using in the identification of deposition al geometries of tufa and their contact relationships with the underlying rocks. Field analysis of faults indicate a vertical sigma-1 orientation which was associated to normal faults
Resumo:
In spite of significant study and exploration of Potiguar Basin, easternmost Brazilian equatorial margin, by the oil industry, its still provides an interesting discussion about its origin and the mechanisms of hydrocarbon trapping. The mapping and interpretation of 3D seismic reflection data of Baixa Grande Fault, SW portion of Umbuzeiro Graben, points as responsible for basin architecture configuration an extensional deformational process. The fault geometry is the most important deformation boundary condition of the rift stata. The development of flat-ramp geometries is responsible for the formation of important extensional anticline folds, many of then hydrocarbon traps in this basin segment. The dominant extensional deformation in the studied area, marked by the development of normal faults developments, associated with structures indicative of obliquity suggests variations on the former regime of Potiguar Basin through a multiphase process. The changes in structural trend permits the generation of local transpression and transtension zones, which results in a complex deformation pattern displayed by the Potiguar basin sin-rift strata. Sismostratigraphic and log analysis show that the Baixa Grande Fault acts as listric growing fault at the sedimentation onset. The generation of a relay ramp between Baixa Grande Fault and Carnaubais Fault was probably responsible for the balance between subsidence and sedimentary influx taxes, inhibiting its growing behaviour. The sismosequences analysis s indicates that the extensional folds generation its diachronic, and then the folds can be both syn- and post-depositional
Resumo:
The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry