141 resultados para Geometria Esférica

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work presents a contribution in the study of modelings of transference of heat for foods submitted to the experimental tests in the considered solar oven, where the best modeling for the beefburger of chicken in study was evaluated, comparing the results, considering this food as a half-infinite(1er object considered model) and,after that, considered the chicken beefburger as a plain plate in transient regimen in two distinct conditions: not considering and another model considering the contribution of the generation term, through the Criterion of Pomerantsev. The Sun, beyond life source, is the origin of all the energy forms that the man comes using during its history and can be the reply for the question of the energy supplying in the future, a time that learns to use to advantage in rational way the light that this star constantly special tax on our planet. Shining more than the 5 billion years, it is calculated that the Sun still in them will privilege for others 6 billion years, or either, it is only in the half of its existence and will launch on the Earth, only in this year, 4000 times more energy that we will consume. Front to this reality, would be irrational not to search, by all means technical possible, to use to advantage this clean, ecological and gratuitous power plant. In this dissertation evaluate the performance of solar cooker of the type box. Laboratory of Solar Energy of the Federal University of the Great River of North - UFRN was constructed by the group (LES) a model of solar stove of the type box and was tested its viability technique, considering modeling foods submitted when baking in the solar oven, the cooker has main characteristic the easiness of manufacture and assembly, the low cost (was used material accessible composition to the low income communities) and simplicity in the mechanism of movement of the archetype for incidence of the direct solar light. They had been proposals modeling for calculations of food the minimum baking time, considering the following models of transference of heat in the transient state: object the halfinfinite, plain plate and the model of the sphere to study the necessary temperature for the it bakes of bread (considering spherical geometry). After evaluate the models of transmission of heat will be foods submitted you the processes of to it bakes of, the times gotten for the modeling with the experimental times of it bakes in the solar oven had been compared, demonstrating the modeling that more good that it portraies the accuracies of the results of the model

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trigonometry, branch of mathematics related to the study of triangles, developed from practical needs, especially relating to astronomy, Surveying and Navigation. Johann Müller, the Regiomontanus (1436-1476) mathematician and astronomer of the fifteenth century played an important role in the development of this science. His work titled De Triangulis Omnimodis Libri Quinque written around 1464, and published posthumously in 1533, presents the first systematic exposure of European plane and spherical trigonometry, a treatment independent of astronomy. In this study we present a description, translation and analysis of some aspects of this important work in the history of trigonometry. Therefore, the translation was performed using a version of the book Regiomontanus on Triangles of Barnabas Hughes, 1967. In it you will find the original work in Latin and an English translation. For this study, we use for most of our translation in Portuguese, the English version, but some doubt utterance, statement and figures were made by the original Latin. In this work, we can see that trigonometry is considered as a branch of mathematics which is subordinated to geometry, that is, toward the study of triangles. Regiomontanus provides a large number of theorems as the original trigonometric formula for the area of a triangle. Use algebra to solve geometric problems and mainly shows the first practical theorem for the law of cosines in spherical trigonometry. Thus, this study shows some of the development of the trigonometry in the fifteenth century, especially with regard to concepts such as sine and cosine (sine reverse), the work discussed above, is of paramount importance for the research in the history of mathematics more specifically in the area of historical analysis and critique of literary sources or studying the work of a particular mathematician

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tese tem como objetivo descrever e analisar características e princípios dos padrões das rendas de bilro de modo a estabelecer relações com a Matemática escolar, principalmente, no que se refere aos tópicos como Geometria, simetria, isometria, área, perímetro, entre outros. Desse modo, elaboramos atividades didáticas, com base na Matemática explorada nos padrões da criação da renda de bilro, visando concretizar um exercício investigatório nas aulas de Matemática, de modo que, sejam estabelecidas relações conceituais entre a prática investigada e os conteúdos da Matemática escolar. Para satisfazer esses objetivos, buscamos apoio metodológico na pesquisa bibliográfica, do tipo documental em catálogos como o da Professora Valdelice Girão (1984) e também o de Dawson (1984). Realizamos também a pesquisa empírica durante as visitas ao Museu do Ceará e ao Centro das Rendeiras na Prainha, em Aquiraz, no Ceará. Para realizar as atividades didáticas, apoiamo-nos em Mendes (2009). Consideramos relevante essa abordagem de ensino porque pressupõe a experiência direta do aprendiz com situações reais vivenciadas, nas quais a abordagem instrucional é centrada no aluno. Desse modo, concluímos que para o ensino de conteúdos como Geometria, simetria, isometria, relação entre perímetro e área, entre outros que são abordados na Educação Básica, os modelos decorrentes da criação renda de bilro e outros modelos já descritos na tradição cearense podem ser usados como artefato cultural na criação de atividades didáticas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency Selective Surfaces (FSS) are periodic structures in one or two dimensions that act as spatial filters, can be formed by elements of type conductors patches or apertures, functioning as filters band-stop or band-pass respectively. The interest in the study of FSS has grown through the years, because such structures meet specific requirements as low-cost, reduced dimensions and weighs, beyond the possibility to integrate with other microwave circuits. The most varied applications for such structures have been investigated, as for example, radomes, antennas systems for airplanes, electromagnetic filters for reflective antennas, absorbers structures, etc. Several methods have been used for the analysis of FSS, among them, the Wave Method (WCIP). Are various shapes of elements that can be used in FSS, as for example, fractal type, which presents a relative geometric complexity. This work has as main objective to propose a simplification geometric procedure a fractal FSS, from the analysis of influence of details (gaps) of geometry of the same in behavior of the resonance frequency. Complementarily is shown a simple method to adjust the frequency resonance through analysis of a FSS, which uses a square basic cell, in which are inserted two reentrance and dimensions these reentrance are varied, making it possible to adjust the frequency. For this, the structures are analyzed numerically, using WCIP, and later are characterized experimentally comparing the results obtained. For the two cases is evaluated, the influence of electric and magnetic fields, the latter through the electric current density vector. Is realized a bibliographic study about the theme and are presented suggestions for the continuation of this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is work itself insert in the mathematics education field of the youth and adult education to aim to practitioners of the educational action into the mathematics area performing to with this is teaching kind, adopting to as parameter the Mathematics Molding approach. The motive of the research is to draw up a application proposal of the molding mathematics as teaching and learning geometry alternative in the youth and adult education. The research it develops in three class of the third level (series 5th and 6th) of he youth and adults education in the one school municipal from the Natal outskirts. Its have qualitative nature with participating observation approach, once performing to directly in to research environment as a mathematics teacher of those same classes. We are used questionnaires, lesson notes and analyses of the officials documents as an basis of claim instruments. The results indicates that activity used the mathematic moldings were appreciated the savoir-faire of the student in to knowledge construction process, when search develop to significant learning methods, helping to student build has mathematics connections with other knowledge areas and inside mathematics himself, so much that enlarges your understanding and assist has in your participation in the other socials place, over there propitiate to change in student and teacher posture with relation to mathematic classroom dynamics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to build a notebook of activities that can help the teacher of elementary school mathematics. Topics covered are arithmetic and geometry and the activities proposed here were developed aiming print them a multicultural character. We take as a base line developed by Claudia Zaslavsky multiculturalism and reflected in his books "Games and activities worldwide" and "More games and activities worldwide." We structure our work around four themes: the symbol of the Olympic Games, the pyramids of Egypt, the Russian abacus abacus and Chinese. The first two themes allow you to explore basic concepts of geometry while the latter two themes allow us to explore numerical notation and arithmetic operations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a proposal for introducing the teaching of Geometry Space study attempts to demonstrate that the use of manipulatives as a teaching resource can be an alternative learning facilitator for fixing the primitive concepts of geometry, the postulates and theorems, position relationships between points, lines and planes and calculating distances. The development makes use of a sequence of activities aimed at ensuring that students can build a more systematic learning and these are divided into four steps

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation, we present a study on the teaching of volume of the sphere and the area of spherical surface. On this topic, a quali-quantitative was taken survey with the objective of identifying how these topics are addressed. For this, we made 14 questions to 30 teachers of Natal and the results of this survey are presented and discussed. After that, we present alternative ways to derive the formulas of the volume of a sphere and the are of a spherical surface

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the potential of several techniques used to identify depositional geometries and paleogeographical investigation on the SW border of the Potiguar Basin. Three areas were selected for an integrated geological, geophysical and geochemistry study. The main used techniques were facies analysis, remote sensing,ground penetrating radar (GPR) and gamma-ray in outcrops, as well as petrographic microscope observations and the using of scanning eletronic microscopic (SEM), and Carbon and Oxygen Isotopic study in the carbonate tufa. These methodological approaches were very efficient in the facies analysis of 2D geometries. The GPR profiles carried out in Quixeré identified important geological reflectors which allowed to the identification of depositional geometries of tufa. However, GPR profiles were not able to identify geological reflectors in the Apodi and Olho d´Água da Bica outcrops. Gammaray profiles also presented good results, which justify their use in 1D and 2D geometric analysis. Carbon and Oxygen Isotopic analyses were also used to investigate paleoenvironmental setting of tufa deposits. It is important to remark the excellent resultsof GRP using in the identification of deposition al geometries of tufa and their contact relationships with the underlying rocks. Field analysis of faults indicate a vertical sigma-1 orientation which was associated to normal faults

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of significant study and exploration of Potiguar Basin, easternmost Brazilian equatorial margin, by the oil industry, its still provides an interesting discussion about its origin and the mechanisms of hydrocarbon trapping. The mapping and interpretation of 3D seismic reflection data of Baixa Grande Fault, SW portion of Umbuzeiro Graben, points as responsible for basin architecture configuration an extensional deformational process. The fault geometry is the most important deformation boundary condition of the rift stata. The development of flat-ramp geometries is responsible for the formation of important extensional anticline folds, many of then hydrocarbon traps in this basin segment. The dominant extensional deformation in the studied area, marked by the development of normal faults developments, associated with structures indicative of obliquity suggests variations on the former regime of Potiguar Basin through a multiphase process. The changes in structural trend permits the generation of local transpression and transtension zones, which results in a complex deformation pattern displayed by the Potiguar basin sin-rift strata. Sismostratigraphic and log analysis show that the Baixa Grande Fault acts as listric growing fault at the sedimentation onset. The generation of a relay ramp between Baixa Grande Fault and Carnaubais Fault was probably responsible for the balance between subsidence and sedimentary influx taxes, inhibiting its growing behaviour. The sismosequences analysis s indicates that the extensional folds generation its diachronic, and then the folds can be both syn- and post-depositional