8 resultados para Genetic Algorithms, Multi-Objective, Pareto Ranking, Sum of Ranks, Hub Location Problem, Weighted Sum

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-classifier systems, also known as ensembles, have been widely used to solve several problems, because they, often, present better performance than the individual classifiers that form these systems. But, in order to do so, it s necessary that the base classifiers to be as accurate as diverse among themselves this is also known as diversity/accuracy dilemma. Given its importance, some works have investigate the ensembles behavior in context of this dilemma. However, the majority of them address homogenous ensemble, i.e., ensembles composed only of the same type of classifiers. Thus, motivated by this limitation, this thesis, using genetic algorithms, performs a detailed study on the dilemma diversity/accuracy for heterogeneous ensembles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.