40 resultados para Gallotti cage
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
R.R.M. de Sousa et al. Nitriding in cathodic cage of stainless steel AISI 316: Influence of sample position. Vacuum, [s.l.], n.83, 2009. Disponivel em:
Resumo:
R.R.M. de Sousa et al. Nitriding in cathodic cage of stainless steel AISI 316: Influence of sample position. Vacuum, [s.l.], n.83, 2009. Disponivel em:
Resumo:
SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. 2008. 119 f. Tese (Doutorado) - Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2008.
Resumo:
The aims of this study were: i) assessing the trophic state of the Mendubim reservoir (semi-arid, Rio Grande do Norte, Brazil; 05° 38 99,0 S 36°55 98,0 W) based on chlorophyll-a, total phosphorus and nitrogen concentrations and water transparency; ii) relating the patterns of temporal variation of zooplankton and phytoplankton to the trophic state of the reservoir and iii) investigating the carrying capacity of the reservoir for cage fish farming. The samplingwas done monthly from July 2006 to July 2007 in three stations at the reservoir: next to the dam (barrage), in the central region and in the mouth of the main tributary. The abiotic and biotic variables analyzed were: Secchi depth, volatiles and fixed suspended solids, chlorophyll-a, total phosphorus and nitrogen, TN:TP ratio and mesozooplankton and phytoplankton composition and biomass. The results showed that the reservoir can be considered as mesotrophic with mean concentrations of total nitrogen, phosphorus and chlorophyll-a equal to 1711, 1 μg.L-1, 30,8 μg.L-1 and 5,62 μg.L-1 respectively. The Cyanophyceae class was the most representative in terms of density, with the presence of potentially toxic species such as Microcystis aeruginosa, Planktothrix planctonica, Cylindrospermopsis raciborskii, Aphanizomenon sp. ,Aphanocapsa delicatissima and Pseudanabaena acicularis. Among the zooplankton, the genus Notodiaptomus presented the largest biomass values. Overall, our results show that the light limitation should explain the weak relationship between chlorophyll-a and total phosphorus and nitrogen concentrations. We concluded that the water of Mendubim reservoir is suitable for intensive fish cage aquaculture. Based on the carrying capacity calculations for this reservoir, we found that the maximum sustainable yield of tilapias in cages in the reservoir is 126 ton per year assuming a factor of food conversion of 1.5: 1.0 and a phosphorus content in the fish food of 1%
Resumo:
Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding
Resumo:
In this research there was an evaluation of the best conditions of nitriding in plasma within a cathodic cage at an atmosphere of 80% N2-20%H2 in samples of tool manganese steel AISI D6, cold working, treated thermally in the following conditions: tension relief, treated thermally to temperature of maximum heat, temperate heat and temperate and temperate heat. A pressure of 2.5mbar and temperatures of 400 and 300ºC com treatment time of two and three hours were used to evaluate its performance as cutting tool (punch) of bicycle backs. Hardness, micro-structural aspects (layer thickness, interface, grain size etc), and crystal phases on the surface were appraised. When treated to tension relief, thermally treated to maximum heat temperature, temperature and temperate heat, the samples presented hardness levels of 243HV, 231HV, 832HV, and 653HV, respectively. The best nitrification conditions were: four hours and 300ºC for heat samples. A superficial hardness of 1000HV and a 108µm thickness for the nitrided layer were found in these samples
Resumo:
In the research, steel samples tool AISI D2, treated thermally, in the conditions: relief of tension, when maximum, seasoned and seasoned was treated thermally in the temperature of revenimento and revenida had been nitrited in plasma with cathodic cage, in atmosphere of 80%N2:20%H2. One used pressure of 2,5 mbar, 400 and 480°C temperatures with treatment time of 3 and 4 hours, with the objective to evaluate its performance in pipes cut tool. It was compared that the performance of the same steel when only thermally treated, both with tension relief. It was evaluated its hardness. Microstructural aspects (the layer thickness, interface, graisn size, etc) and crystalline phases on the surface. Besides, it was verified accomplishment possibility of nitriding simultaneous to annealing treatment. The tempering samples had presented hardness levels of 600 HV, while in nitrited samples these values had been 1100 HV
Resumo:
The ionic plasma nitriding is one of the most important plasma assisted treatment technique for surface modification, but it presents some inherent problems mainly in nitriding pieces with complex geometries. In the last four years has appeared a plasma nitriding technique, named ASPN (Active Screen Plasma Nitriding) in which the samples and the workload are surrounded by a metal screen on which the cathodic potential is applied. This new technique makes possible to obtain a perfect uniform nitrided layer apart from the shape of the samples. The present work is based on the development of a new nitriding plasma technique named CCPN (Cathodic Cage Plasma Nitriding) Patent PI 0603213-3 derived from ASPN, but utilizes the hollow cathode effect to increase the nitriding process efficiency. That technique has shown great improvement on the treatment of several types of steels under different process conditions, producing thicker and harder layers when compared with both, ASPN and ionic plasma nitriding, besides eliminating problems associated with the later technique. The best obtained results are due to the hollow cathode effect on the cage holes. Moreover, characteristic problems of ionic plasma nitriding are eliminated due to the fact that the luminescent discharge acts on the cage wall instead of on the samples surface, which remains under a floating potential. In this work the enhancement of the cathodic cage nitriding layers proprieties, under several conditions for some types of steels was investigated, besides the mechanism for nitrides deposition on glass substrate, concluding that the CCPN is both a diffusion and a deposition process at the same time
Resumo:
Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film
Resumo:
The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film
Resumo:
The ionic nitriding process presents some limitations related with the control of the thickness of the layer and its uniformity. Those limitations that happen during the process, are produced due to edge effects, damage caused by arcing arc and hollow cathode, mainly in pieces with complex geometry and under pressures in excess of 1 mbar. A new technique, denominated ASPN (active screen shapes nitriding) it has been used as alternative, for offering many advantages with respect to dc plasma conventional. The developed system presents a configuration in that the samples treated are surrounded by a large metal screen at high voltage cathodic potencials, (varying between 0 and 1200V) and currents up to 1 A. The sample is placed in floting potential or polarized at relatively lower bias voltages by an auxiliary source. As the plasma is not formed directly in the sample surface but in the metal screen, the mentioned effects are eliminated. This mechanism allows investigate ion of the transfer of nitrogen to the substrate. Optical and electronic microscopy are used to exam morphology and structure at the layer. X-ray difration for phase identification and microhardness to evaluate the efficiency of this process with respect to dc conventional nitriding
Resumo:
Nowadays, in the plastic industry are used mills that accomplish the recycling of residues generated in the production of its components. These mills contain cut sheets that suffer accelerated wear, once they are submitted constantly to the tribologic efforts, decreasing its useful life. To reduce this problem, it s used noble steels or takes place superficial treatments. The ionic nitriding process presents some limitations related to the uniformity of the layer in pieces with complex geometry, committing its application in pieces as knives, head offices, engagements, etc. However, the new technique of nitriding in cathodic cage eliminates some problems, as the restrictions rings, inherent to the conventional ionic nitriding. In present work, was studied the use viabilization of steels less noble, as SAE 1020, SAE 4320 and SAE 4340, nitreded by two different techniques, to substitute the AISI 01 steels, usually used in the cut knifes fabrication, seeking to reduce the costs and at the sane time to increase the useful life of these knifes. The steel most viable was the SAE 4340, nitrided in cathodic cage, because it presented uniformity in thickness and in the hardness of the layer, besides of increased 58% in the average its useful life
Resumo:
The dams are limnic ecosystems of great importance for its multiple uses, among them, water supply for the public and to culture of artisanal fish are most relevant. The aim of the present study is to evaluate the physical-chemical characteristics and the phytoplankton community in two chosen sites (Point 1 littoral zone of point source; Point 2 pelagic zone of non-point source) of the Minister João Alves dam, which is also known as Boqueirão de Parelhas/RN. This represents the spatial distribution of the phytoplankton species in order to understand any possible alterations of the water quality and the phytoplankton composition in relation to the water quality originating from the impact of the tilapia, Oreochromis niloticus, culture. The study period also encompasses temporal variations exhibited in two seasons of an annual cycle, one during the dry season (Oct, Nov and Dec of 2008 and Jan of 2009), and the other rainy season (Mar, Apr, May and June of 2008) to extend the observation. The physicalchemical parameters, such as pH, temperature, electrical conductivity, concentration of dissolved oxygen were measured in situ and the values of the inorganic nutrients (nitrate, ammonium and orto-phosfato) and chlorophyll in the laboratory. The quali-quantitative analyses of the phytoplankton had been carried through sedimentation technique and the enumeration of the random of 400 cells, colonies and filaments counted using Sedgwick-Rafter counting chamber. The results of pH varied widely from the acidic to alkaline range with the minimum of 5.8 (± 0.8) and the maximum of 9.2 (± 0.7-0.8), at point 1 and 2. The dissolved oxygen content was higher in the rainy period than that in the dry period. The maximum electrical conductivity was of 1409 μScm-1 in point 1 and 431 minim of μScm-1, in point 2. There was a considerable alteration in the levels of inorganic nutrients such as nitrate-nitrogen, ammoniacal nitrogen and orthophosphate during the two cycles of study period. Phytoplankton assemblages presented a picture of alternate dominance among species Cyanobacteria, Bacillariophyceae and Chlorophyceae. The trophic state index diagnosed to the category of mesotrophic, which is based on the values of chlorophyll, total phosphorus and Secchi-disc measurements. The wind driven turbulence of the water column and the fresh inflow of water (flushing and dilution) during rainy season acted as constraint and did-not allow an exaggerated growth of the species of cyanobacteria. On the basis of the present we conclude that the culture of tilapias in cage-culture fails to produce pollution load that could compromise the quality of the water of the dam, probably be due to small dimension of the culture in relation to the size, volume of the water and the reservoir capacity support its own environment
Resumo:
Homosexuality has been gaining strength in Cinema from the late twentieth century, when there is a dissemination of freedoms around the peripheral or marginal sexualities. Based on this assumption, it was formulated in the dissertation work, an analysis of the relationship between Cinema and Sexuality in order to understand, describe, reflect and analyze possible changes around the performative behaviors of male homosexual from the introduction of them in film production, arising from the mass culture industry. These productions are located in three different decades. In this case, the Cinema has not only the reproductive character of realities, but also a producing agent and consolidating them. The methodology applied was discourse analysis of three film works, namely La Cage aux Folles (1978), In & Out (1997) and Boat Trip (2002). The image, research object of this work, is developed by a mass culture that will produce mass identities which is characterized by crystallization of clichés around the gay world
Resumo:
Electrical Motors transform electrical energy into mechanic energy in a relatively easy way. In some specific applications, there is a need for electrical motors to function with noncontaminated fluids, in high speed systems, under inhospitable conditions, or yet, in local of difficult access and considerable depth. In these cases, the motors with mechanical bearings are not adequate as their wear give rise to maintenance. A possible solution for these problems stems from two different alternatives: motors with magnetic bearings, that increase the length of the machine (not convenient), and the bearingless motors that aggregate compactness. Induction motors have been used more and more in research, as they confer more robustness to bearingless motors compared to other types of machines building with others motors. The research that has already been carried out with bearingless induction motors utilized prototypes that had their structures of stator/rotor modified, that differ most of the times from the conventional induction motors. The goal of this work is to study the viability of the use of conventional induction Motors for the beringless motors applications, pointing out the types of Motors of this category that can be more useful. The study uses the Finite Elements Method (FEM). As a means of validation, a conventional induction motor with squirrel-cage rotor was successfully used for the beringless motor application of the divided winding type, confirming the proposed thesis. The controlling system was implemented in a Digital Signal Processor (DSP)