9 resultados para Frequency response functions

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Were synthesized different ferrites NixZn1-xFe2O4 (0,4 ≤ x ≤ 0,6) compositions by using citrate precursor method. Initially, the precursors citrates of iron, nickel and zinc were mixed and homogenized. The stoichiometric compositions were calcined at 350°C without atmosphere control and the calcined powders were pressed in pellets and toroids. The pressed material was sintered from 1100º up to 1200ºC in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, SEM and vibrating sample magnetometer (VSM). All sintered samples were characterized using XRD, SEM, VSM and measurements of magnetic permeability and loss factor were obtained. It was formed pure ferromagnetic phase at all used temperatures. The Rietveld analyses allowed to calculate the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (12-20 nm) to the calcined powder. By SEM, the sintered samples shows grains sizes from 1 to 10 μm. Sintered densities (ρ) were measured by the Archimedes method and with increasing Zn content, the bulk density decrease. The better magnetization results (105-110 emu/g) were obtained for x=0,6 at all sintering temperatures. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The sintered toroids presents relative magnetic permeability (μr) from 7 to 32 and loss factor (tanδ) of about 1. The frequency response of toroids range from 0,3 kHz to 0,2 GHz. The composition x=0,5 presents both greater μr and tanδ values and x=0,6 the most broad range of frequency response. Various microstructural factors show influence on the behavior of μr and tanδ, such as: grain size, porosity across grain boundary and inside the grain, grain boundary content and domain walls movement during the process of magnetization at high frequency studies (0,3kKz 0,2 GHz)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different compositions of Ni0,5-xCuxZn0,5Fe2O4 and Ni0,5-xCoxZn0,5Fe2O4 0 ≤ x ≤ 0.3 were synthesized ferrite y the citrate precursor method. The stoichiometric compositions were calcined in air at 350°C and then pressed into pellets and toroids. The pressed samples were sintered at temperatures of 1000, 1050 and 1100°C/3h in air control at the speed of heating and cooling. The calcined powders were characterized by XRD, TGA / DTG, FTIR, SEM and vibrating sample magnetometry (VSM) and the sintered samples by XRD, SEM, MAV, density and measurements of permeability and magnetic losses. There was pure phase formation ferrimagnetism applied at all temperatures except for A-I composition at all sintering temperatures and A-II only at a temperature of 1100°C. Crystallite sizes were obtained by Rietveld analysis, nanometer size from 11 to 20 nm for the calcined powders. For SEM, the sintered samples showed grain size between 1 and 10 micrometers. Bulk density (ρ) of sintered material presented to the Families almost linear behavior with increasing temperature and a tendency to decrease with increasing concentration of copper, different behavior of the B Family, where the increase in temperature decreased the density. The magnetic measurements revealed the powder characteristics of a soft ferrimagnetic material. Two processes of magnetization were considered, the superparamagnetism at low temperatures (350°C) and the formation of magnetic domains at higher temperatures. Obtaining the best parameters for P and B-II magnetic ferrites at high temperatures. The sintered material at 1000°C showed a relative permeability (μ) from 50 to 800 for the A Family and from 10 to 600 for the B Family. The samples sintered at 1100°C, B Family showed a variation from 10 to 1000 and the magnetic loss (tan δ) of A and B Families, around of 1. The frequency response of the toroidal core is in the range of 0.3 kHz. Several factors contribute to the behavior of microstructure considering the quantities μ and tan δ, such as the grain size, inter-and intragranular porosity, amount of grain boundary and the aspects of the dynamics of domain walls at high frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a hybrid technique of frequency selective surfaces project (FSS) on a isotropic dielectric layer, considering various geometries for the elements of the unit cell. Specifically, the hybrid technique uses the equivalent circuit method in conjunction with genetic algorithm, aiming at the synthesis of structures with response single-band and dual-band. The equivalent circuit method allows you to model the structure by using an equivalent circuit and also obtaining circuits for different geometries. From the obtaining of the parameters of these circuits, you can get the transmission and reflection characteristics of patterned structures. For the optimization of patterned structures, according to the desired frequency response, Matlab™ optimization tool named optimtool proved to be easy to use, allowing you to explore important results on the optimization analysis. In this thesis, numeric and experimental results are presented for the different characteristics of the analyzed geometries. For this, it was determined a technique to obtain the parameter N, which is based on genetic algorithms and differential geometry, to obtain the algebraic rational models that determine values of N more accurate, facilitating new projects of FSS with these geometries. The optimal results of N are grouped according to the occupancy factor of the cell and the thickness of the dielectric, for modeling of the structures by means of rational algebraic equations. Furthermore, for the proposed hybrid model was developed a fitness function for the purpose of calculating the error occurred in the definitions of FSS bandwidths with transmission features single band and dual band. This thesis deals with the construction of prototypes of FSS with frequency settings and band widths obtained with the use of this function. The FSS were initially reviewed through simulations performed with the commercial software Ansoft Designer ™, followed by simulation with the equivalent circuit method for obtaining a value of N in order to converge the resonance frequency and the bandwidth of the FSS analyzed, then the results obtained were compared. The methodology applied is validated with the construction and measurement of prototypes with different geometries of the cells of the arrays of FSS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advances in vaccine development and therapy, bacterial meningitis (BM) remains a major cause of death and long-term neurological disabilities. As part of the host inflammatory response to the invading pathogen, factors such as reactive oxygen species are generated, which may damage DNA and trigger the overactivation of DNA repair mechanisms. It is conceivable that the individual susceptibility and outcome of BM may be in part determined by non synonymous polymorphisms that may alter the function of crucial BER DNA repair enzymes as PARP-1, OGG-1 and APE-1. These enzymes, in addition to their important DNA repair function, also perform role of inflammatory regulators. In this work was investigated the non synonymous SNPs APE-1 Asn148Glu, OGG-1 Ser326Cys,PARP-1 Val762Ala, PARP-1 Pro882Leu and PARP-1 Cys908Tyr in patients with bacterial meningitis (BM), chronic meningitis (CM), aseptic meningitis (AM) and not infected (controls). As results we found increased frequency of variant alleles of PARP-1 Val762Ala (P = 0.005) and APE-1 Asn148Glu (P=0.018) in BM patients, APE-1 Asn148Glu in AM patients (P = 0.012) and decrease in the frequency of the variant allele OGG-1 Ser326Cys in patients with CM (P = 0.013), regarding the allelic frequencies in the controls. A major incidence of individuals heterozygous and/ or polymorphic homozygous in BM for PARP-1 Val762Ala (P= 0.0399, OD 4.2, 95% IC 1.213 -14.545) and PARP-1 Val762Ala/ APE-1 Asn148Glu (P = 0.0238, OD 11.111, 95% IC 1.274 - 96.914) was observed related to what was expected in a not infected population. It was also observed a major incidence of combined SNPs in the BM patients compared with the control group (P=0.0281), giving evidences that SNPs can cause some susceptibility to the disease. This combined effect of SNPs seems to regulate the principal cytokines and other factors related to BM inflammatory response and point the importance of DNA repair not only to repair activity when DNA is damaged, but to others essential functions to human organism balance.