64 resultados para Fraturas dos Dentes
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index
Resumo:
Following the study of Andrade et al. (2009) on regular square lattices, here we investigate the problem of optimal path cracks (OPC) in Complex Networks. In this problem we associate to each site a determined energy. The optimum path is defined as the one among all possible paths that crosses the system which has the minimum cost, namely the sum of the energies along the path. Once the optimum path is determined, at each step, one blocks its site with highest energy, and then a new optimal path is calculated. This procedure is repeated until there is a set of blocked sites forming a macroscopic fracture which connects the opposite sides of the system. The method is applied to a lattice of size L and the density of removed sites is computed. As observed in the work by Andrade et al. (2009), the fractured system studied here also presents different behaviors depending on the level of disorder, namely weak, moderated and strong disorder intensities. In the regime of weak and moderated disorder, while the density of removed sites in the system does not depend of the size L in the case of regular lattices, in the regime of high disorder the density becomes substantially dependent on L. We did the same type of study for Complex Networks. In this case, each new site is connected with m previous ones. As in the previous work, we observe that the density of removed sites presents a similar behavior. Moreover, a new result is obtained, i.e., we analyze the dependency of the disorder with the attachment parameter m
Resumo:
Esse estudo se propôs a avaliar um método auxiliar de diagnóstico (DIAGNOdent®) na predição de cárie de dentina em dentes decíduos, através de validação histológica e de microdureza. Verificando possíveis diferenças entre os valores obtidos através do método auxiliar, além de determinar um ponto de corte para parada de remoção de tecido cariado. A amostra do estudo foi de 15 crianças que apresentaram 21 cavidades de cárie, tratadas e analisadas desde antes da realização da restauração até quando da exodontia do elemento dentário. Os espécimes foram analisados através do DIAGNOdent® antes da abertura das cavidades, após a remoção do tecido cariado e depois da reabertura das cavidades que se deu após a exodontia dos elementos dentários. Posteriormente, receberam preparo metalográfico para realização de testes de microdureza e microscopia óptica que serviram como forma de validação para as mensurações obtidas pela fluorescência a laser. Houve diferença significativa entre os valores DIAGNOdent® encontrados antes da abertura da cavidade e os demais (p < 0,0001). Havendo correlação significativa (r = 0,432 ; p = 0,019) apenas para as aferições obtidas antes da abertura das cavidades e quando do término da remoção do tecido cariado. Para a microdureza, as médias axiais foram significativamente maiores que as pulpares, existindo correlação entre a microdureza pulpar e os valores do DIAGNOdent® após a reabertura (r = - 0,472 ; p = 0,002). Valores de 15,38% para a sensibilidade, 100% para a especificidade, 100% para o valor preditivo positivo e 71,79% para o valor preditivo negativo, foram obtidos quando se utilizou um ponto de corte de 30 para fluorescência a laser, tendo como padrão-ouro a microdureza pulpar. Partindo da média dos valores de fluorescência a laser obtidos após a remoção do tecido cariado e acrescentando-se um desvio-padrão a esta, o método indicou o valor de 19 como ponto de corte para cessar a remoção de dentina. Concluiu-se que, nas condições analisadas, o método auxiliar de diagnóstico (DIAGNOdent®) é um método acurado na predição de cárie de dentina em dentes decíduos. Além disso, o método comprovou que o padrão usual de remoção de dentina garante a remoção do tecido cariado
Resumo:
The literature has shown a relation between periodontics and the removable partial denture (RPD), with progressive destruction observed in the support structures. The aim of this study was to clinically assess periodontal condition in users of removal partial denture (RPD), and compare right abutments teeth, indirect abutments and controls before installation and after 1 year, in addition to comparing tooth-supported and tooth mucosa-supported abutments. A total of 50 patients, 32 women and 18 men, mean age of 45 years, took part in the study. The patients were examined by a single examiner at prosthesis installation and after 3, 6, 9 and 12 months. The following were verified at each examination: Probe Depth (PD), Plaque Index (PI), Gingival Index (GI), the amount of Keratinized Mucosa (KM), Gingival Recession (GR) and Dental Mobility (DM); in addition patients received oral hygiene orientation, accompanied by prophylaxis, periodontal scaling and root planing (PSRP), when necessary. Analysis of Variance (ANOVA) with Tukey-Kramer post test was used to assess the dependent variables (PD, PI, KM, GR) of the three groups over time while Friedman s test was used for GI. To assess the outcomes of prosthesis type in the right abutment group, a confidence interval-based analysis was performed. The results showed that the control group was the least compromised in all the variables studied. With respect to development of the groups over time, it was verified that the measures for GR, PD, GI and KM increased from initial examination to 1 year of use in all the groups, but only PI showed a significant increase. There was a non-discriminatory low prevalence of dental mobility. The tooth mucosa-supported prosthesis had significantly higher values for GR, GI and PI and significantly lower ones for KM when compared to tooth-supported. Over time, both types of prostheses showed no significant differences from initial to final examination for the variables GR, PD, KM and GI, with PI significant only for tooth-supported. The results showed that the teeth most involved in RPD design had greater potential of periodontal damage, probably because of greater dental biofilm accumulation. Abutments elements adjacent to the free extremities had less favorable periodontal condition than those adjacent to interpolated spaces, but the use of RPD did not worsen the initial condition
Resumo:
The aim of this study was to comparatively evaluate the mechanical strength of squared and rectangular 2.0 mm system miniplates comparing them to the standard configuration with 2 straight miniplates in stabilizing fractures in the anterior mandible. Ninety synthetic polyurethane mandible replicas were used in mechanical test. The samples were divided into six groups of three different methods for fixation. Groups 1, 2 and 3 showed complete fractures in symphysis, characterized by a linear separation between the medial incisor, and groups 4, 5 and 6 showed complete fractures in parasymphysis with oblique design. Groups 1 and 4 were represented by the standard technique with two straight miniplates parallel to each other. Groups 2 and 5 were stabilized by squared miniplates and groups 3 and 6 were fixed by rectangular design. Each group was subjected to a mechanical test at a displacement speed of 10 mm/min on a universal testing machine, receiving linear vertical load on the region of the left first molar. The values of the maximum load and when displacements reached 5 mm were obtained and statistically analyzed by calculating the confidence interval of 95%. Fixation systems using squared (G2) and rectangular (G3) miniplates obtained similar results. No statistically significant differences with respect to the maximum load and the load at 5 mm displacement were found when compared to standard method in symphyseal fractures (G1). In parasymphysis the fixation method using squared miniplates (G5) obtained results without significant differences regarding the maximum load and the load at 5 mm when compared to the standard configuration (G4). The fixation method using rectangular miniplates (G6) showed inferior results which were statistically significant when compared to the standard configuration (G4) for parasymphysis fractures. The mechanical behavior of the fixation methods was similar, except when rectangular miniplates were used. The fixation methods showed better results with statistical significance in symphyseal fractures
Resumo:
Dental pulp stem cells have been widely investigated because of their ability to differentiate into both dental and non-dental cells, with potential use in therapies involving tissue engineering. The technique of cell cryopreservation represents a viable alternative for the conservation of these cells, since it stops reversibly, in a controlled manner, all of cell biological functions in an ultra low temperature. The present study aimed to evaluate, using in vitro experiments, the influence of a cryopreservation protocol on the biologic acti vity of stem cells from human exfoliated deciduous teeth (SHED). Cells obtained from the pulp of three deciduous teeth on end-stage exfoliation or with indicated extraction were expanded in α-MEM culture medium supplemented with antibiotics and 15% fetal bovine serum. At second subculture (P2), a group of cells were submitted to cryopreservation for 30 days in 10% DMSO diluted in fetal bovine serum, at -80º C, while the remind cells continued under normal conditions of cell culture. Cell proliferation was evaluated in both groups (not cryopreserved or cryopreserved) by Trypan blue stain essay at intervals of 24, 48 and 72h after plating. Cell cycle analysis of SHEDs submitted or not to the cryopreservation protocol was performed in the same intervals. Events related to cell death were studied by Annexyn V and PI expression under flow cytometry at the intervals of 24 and 72h. The presence of nuclear morphological changes was evaluated by DAPI staining at 72h interval. It was observed that both groups exhibited an upward cell proliferation curve, without considerable changes in cell viability throughout the experiment. The distribution of cell in the cell cycle phasis was consistent with cell proliferation in both groups. There were no nuclear morphological damages in the end range of the experiment. therefore, it is concluded that the proposed cryopreservation protocol is efficient for storing the studied cell type, allowing its use in future experimental studies
Resumo:
The RANK / RANKL / OPG sy stem plays an important role in bone formation and resorption . This finding has been regarded as one of the m ost important advances in the understanding of bone biology with respect to osteoclastogenesis. The aim of this study was to investigate the expression of RANKL / RANK / OPG markers in reimplanted t eeth of rats, and to observe the relationship between the expression of these markers and to oth and bone resorption. Thirty male Wistar rats (Rattus norvegicus albinos) had their maxillary right incisors extrac ted , and were divided into 2 groups according to the period that the extracted teeth were kept in dry air before reimplantation : G1 (n = 15) - 5 minutes , and G2 (n = 15) - 60 minutes . After reimplantation, teeth were analyzed at intervals of 1, 3 and 7 da ys. After these experimental periods, the animals were euthanized. Longitudinal sections with 5μm thick were obtained and stained with Hematoxylin and Eosin for histological analysis , while 3μm thick sections were subjected to immunohistochemical analysis of OPG , RANK and RANKL. The results showed that the RANK / RANKL / OPG system actively participates in both the repair process, as well as tooth and bone resorption . Extr a - alveolar time of 60 minutes before replantation caused minor expressions of RANKL a nd OPG, not influencing the expression of RANK; RANKL immunostaining showed higher in both groups when compared to other biomarkers, participating in all phases of bone and tooth resorption; RANKL was associated to both osteoclastogenesis and c ell ular proliferation , and was expressed in both groups.
Resumo:
The recognition of karst reservoirs in carbonate rocks has become increasingly common. However, most karst features are small to be recognized in seismic sections or larger than expected to be investigated with borehole data. One way forward has been the study of analogue outcrops and caves. The present study investigates lithofacies and karst processes, which lead to the generation of the largest system of caves in South America. The study area is located in the Neoproterozoic Una Group in central-eastern Brazil. This province comprises several systems of carbonate caves (Karmann and Sanchéz, 1979), which include the Toca da Boa Vista and Barriguda caves, considered the largest caves in South America (Auler and Smart, 2003). These caves were formed mainly in dolomites of the Salitre Formation, which was deposited in a shallow marine environment in an epicontinental sea (Medeiros and Pereira, 1994). The Salitre Formation in the cave area comprises laminated mud/wakestones, intraclastic grainstones, oncolitic grainstones, oolitic grainstones, microbial laminites, colunar stromatolites, trombolites and fine siliciclastic rocks (marls, shales, and siltites). A thin layer and chert nodules also occur at the top of the carbonate unit. Phosphate deposits are also found. Our preliminary data indicate that folds and associated joints control the main karstification event at the end of the Brasiliano orogeny (740-540 Ma). We recognized five lithofacies in the cave system: (1) Bottom layers of grainstone with cross bedding comprise the main unit affected by speleogenesis, (2) thin grainstone layers with thin siltite layers, (3) microbial laminites layers, (4) layers of columnar stromatolites, and a (5) top layer of siltite. Levels (1) to (3) are affected by intense fracturing, whereas levels (4) and (5) seal the caves and have little fracturing. Chert, calcite and gipsite veins cut across the carbonate units and play a major role in diagenesis. Our preliminary study indicate that hypogenic spelogenesis is the main process of karst development and contributed significantly to the generation of secondary porosity and permeability in the carbonate units.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index
Resumo:
SILVA, J. S. P. Avaliação histomorfométrica do efeito do ultrasom pulsado nas falhas ósseas provocadas em fêmures de rato: estudo experimental . 2000. 85 f. Dissertação (Mestrado) – Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2000.
Resumo:
NORO, Luiz Roberto Augusto et al. Incidência de cárie dentária em adolescentes em município do Nordeste brasileiro, 2006, Cadernos de Saúde Pública, Rio de Janeiro, v. 25, n. 4, p. 783-790, abr. 2009.
Resumo:
Protein and caloric malnutrition has been considered one of the most concerned endemic diseases in Brazil and in the world. It has been known that depletion or reduction of proteins as far as meals are concerned can steer irreversible damages upon several organic systems. This study had as aim evaluate the effects the low-protein diet had over the formation and composition of the teeth components. 18 females and 6 males were used for the experiment. 12 from the 18 females had undertaken the low-protein diet (DH) for 03 weeks and the other 6, which remained, and those males had undertaken a controlled diet (DC) for the same period. All animals had the diets during their mating, pregnancy and lactation cycle. As soon as the offsprings had been born, 10 young males and females of each group faced a disease hood analysis to check the teeth germs of their lower fore teeth. The rest of the group had their lactation cycle normally 60 days. Then they were put to death and had their lower fore teeth removed both to be analyzed through a scanning electronic microscopy (SEM) of the structure alterations and to have their calcium checked by an atomic absorption of the phosphorus vanadate-molibdate method and by other minerals EDX method. The animals livers were removed to have their hepatic proteins analyzed as well. The histopatologic study showed that at first day of birth, all animals had their lower fore teeth come out. It was verified that 90% of the animals teeth were in an apposition and calcification period and it was possible to observe the dentin formation from 60% of the 90% already mentioned. Through the SEM method it could be realized that 90% of the animals of the DH group had their lower fore teeth easily broken and no definite shape. In this same group itself, it was also observed long micro fissures 369,66 nm ± 3,45 while the DC group had fissures of 174 nm ± 5,72. Now regarding the calcium and phosphorus concentration, it could be noticed that there was a great reduction of these components and other minerals in the DH group. Almost all minerals, except for the Cl and K, presented higher levels in the DC group enamel.The reduction of the protein input greatly influenced the offsprings´ weight and height. However the hepatic proteins had no important difference between the groups what can make one believe that those animals suffered from protein malnutrition of marasmic kind
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)