6 resultados para Fix and optimize

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypertension is a dangerous disease that can cause serious harm to a patient health. In some situations the necessity to control this pressure is even greater, as in surgical procedures and post-surgical patients. To decrease the chances of a complication, it is necessary to reduce blood pressure as soon as possible. Continuous infusion of vasodilators drugs, such as sodium nitroprusside (SNP), rapidly decreased blood pressure in most patients, avoiding major problems. Maintaining the desired blood pressure requires constant monitoring of arterial blood pressure and frequently adjusting the drug infusion rate. Manual control of arterial blood pressure by clinical personnel is very demanding, time consuming and, as a result, sometimes of poor quality. Thus, the aim of this work is the design and implementation of a database of tuned controllers based on patients models, in order to find a suitable PID to be embedded in a Programmable Integrated Circuit (PIC), which has a smaller cost, smaller size and lower power consumption. For best results in controlling the blood pressure and choosing the adequate controller, tuning algorithms, system identification techniques and Smith predictor are used. This work also introduces a monitoring system to assist in detecting anomalies and optimize the process of patient care.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently the market requires increasingly pure oil derivatives and, with that, comes the need for new methods for obtaining those products that are more efficient and economically viable. Considering the removal of sulfur from diesel, most refineries uses catalytic hydrogenation process, the hydrodesulfurization. These processes needs high energy content and high cost of production and has low efficiency in removing sulfur at low concentrations (below 500 ppm). The adsorption presents itself as an efficient and economically viable alternative in relation to the techniques currently used. With that, the main purpose of this work is to develop and optimize the obtaining of new adsorbents based on diatomite, modified with two non ionic surfactants microemulsions, adding efficiency to the material, to its application on removal of sulfur present in commercial diesel. Analyses were undertaken of scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray fluorescence (XRF), thermogravimetry (TG) and N2 adsorption (BET) for characterization of new materials obtained. The variables used for diatomite modification were: microemulsion points for each surfactant (RNX 95 and UNTL 90), microemulsion aqueous phase through the use or non-use of salts (CaCl2 and BaCl2), the contact time during the modification and the contact form. The study of adsorption capacity of materials obtained was performed using a statistical modeling to evaluate the influence of salt concentration in the aqueous phase (20 ppm to 1500 ppm), finite bath temperature (25 to 60° C) and the concentration of sulphur in diesel. It was observed that the temperature and the concentration of sulphur (300 to 1100 ppm) were the most significant parameters, in which increasing their values increase the ability of modified clay to adsorb the sulphur in diesel fuel. Adsorption capacity increased from 0.43 to mg/g 1.34 mg/g with microemulsion point optimization and with the addition of salts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pre-salt province is composed by large amounts of light oil and with good quality, a reality that puts Brazil in a strategic position facing the great demand for energy worldwide. In this province are the largest discoveries in the world in the last ten years; areas as Libra, Franco and Lula field, everyone containing volumes greater than 8 billion recoverable oil barrels. To develop and optimize the production of these fields, a study was done for choosing the improved oil recovery methods. The main motivations were the presence of carbon dioxide (CO2) as a contaminant and the strategic decision of do not discard it, combined with high GOR (gas-oil ratio) of the reservoir fluid. The method should take advantage of the unique abundant resources: seawater and produced gas. This way, the process of matching these resources in the water alterning gas injection (WAG) became a good option. In this master’s dissertation, it was developed a reservoir model with average characteristics of the Brazilian pre-salt, where was applied the improved oil recovery method of water alternating gas. The production of this reservoir was analyzed by parameters as: the first fluid injected in the injection process, position of the injection wells completion, injection water and gas rate and cycle time. The results showed a good performance of the method, with up to 26% of gains in the recovery factor regarding the primary recovery, since the application of water injection and gas, individually, was not able to overcome 10 % of gain. The most influential parameter found in the results was the cycle time, with higher recovery factor values obtained with the use of shorter times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems