13 resultados para Fills (Earthwork)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores
Resumo:
To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles
Resumo:
This work presents results of field and laboratory tests using a Dynamic Cone Penetrometer, DCP. The tests were performed in order to evaluate the use of the equipment in sand for the control of bearing capacity of shallow foundations and fill compaction. For shallow foundations, the laboratory tests were conducted on sand placed in a metallic mould by the method of sand pluviation. Although the results show the inability to reproduce field conditions in the laboratory it was possible to verify the ability of the DCP to identify less resistant soil layers. The DCP tests for the analysis of compaction control were performed in a strong box with inside dimensions of 1,40 m x 1,40 m and 0,70 m in height. The soil layers were compacted with different densities though the use of a vibrating plate in order to obtain correlations between penetration index, DPI, and soil relative density. Other tests were also conducted to assess the influence of soil moisture on tests results. Among other findings, the results showed the great potential for the use of DCP to control the compaction of sand fills
Resumo:
An experimental study has been conducted to investigate the behavior of continuous flight auger (cfa) bored piles and metalic driven H-section piles under lateral loading in cohesionless soils. The piles were tested in two different areas at the same site. Both areas consisted of a 3-m thick compacted superficial fill of pure fine sand, underlain by layers of naturally occurring pure fine-thick sand. Fills are differentiated by the relative densities which were compressed, 45% e 70%, respectively. Each area received one identical pair of cfa piles and two identical pairs of H-piles. A static lateral loading test was performed in each pair of piles. In this work, the pile load test results are reported and interpreted. The horizontal coefficient of subgrade reaction was determined from the results of the loading tests and compared with values determined by correlations based on penetration resistance index of SPT tests (NSPT). p-y formulations describing the static behavior of the piles were applied to the problem under evaluation. Back Analyses were made through theoretical and experimental p-y curves for obtaining input parameters for the analytic models, among which the coefficient of horizontal reaction. The soil pile system horizontal loading at rupture was determined by the theoretical methods and the results were compared with the experimental results, checking its validity
Resumo:
This dissertation aims to answer the question: What are the specifics of psychoanalytical clinic with children in neurosis and psychosis and its consequences for the treatment direction? It constitutes a theoretical study based on Freud, Lacan and the current productions of Lacanian psychoanalysts about the clinic with children. It presents some clinical vignettes. To answer this question, were constructed four chapters. The chapter The subject constitution treats the psychoanalysis subjectivity, based on a structure from the relationship with the Other. Key concepts of Lacanian psychoanalysis are shown, necessary to understand what becomes present in clinic with children. The second chapter, The clinic of neurosis, reveals the structure of the subject in its oedipal mooring held by the Name-of the-Father, that separates the mother-child dual relationship. The child neurosis is the effect of psyche constitution and the symptoms are an interpretation of what child picks up from parents and helps him/her on the passage through the Oedipus. The analyst is there to help him/her through this path. The next chapter is entitled The clinic of psychosis. In psychosis the non-occurrence of the Name-of-the-Father is concerned. The subject is stuck in duality with the mother, and becomes what fills the Other s gap. To protect themselves, they have to be in incessant work. The analyst will be a child s partner in daily work already carried out by him/her. The last chapter, The consequences for the treatment direction, shows that the standard analytic treatment works well to the clinic of neurosis. To psychosis it s not true. Psychoanalysts thought about a different way of psychotic children treatment: the practice held in a multiprofessional team work. The practice shared by many has been a team strategy applied to the institutional practice that aims to attenuate the invasive character of the Other, facilitating the partnership between the analyst and the child in treatment and the Other contention
Resumo:
The game industry has been experiencing a consistent increase in production costs of games lately. Part of this increase refers to the current trend of having bigger, more interactive and replayable environments. This trend translates to an increase in both team size and development time, which makes game development a even more risky investment and may reduce innovation in the area. As a possible solution to this problem, the scientific community is focusing on the generation of procedural content and, more specifically, on procedurally generated levels. Given the great diversity and complexity of games, most works choose to deal with a specific genre, platform games being one of the most studied. This work aims at proposing a procedural level generation method for platform/adventure games, a fairly more complex genre than most classic platformers which so far has not been the subject of study from other works. The level generation process was divided in two steps, planning and viusal generation, respectively responsible for generating a compact representation of the level and determining its view. The planning stage was divided in game design and level design, and uses a goaloriented process to output a set of rooms. The visual generation step receives a set of rooms and fills its interior with the appropriate parts of previously authored geometry
Resumo:
Through an integrated approach, using litho, chrono and biostratigraphic data, the relative importance of climate variations and tectonics were recognized in rift sediments of the onshore Potiguar Basin, Northeast Brazil. Concepts of sequence stratigraphy were applied as a template to integrate sedimentological and geochemical data (oxygen isotopes), as well as quantitative palynologic methods to address and recognize the main depositional patterns produced in a rift basin. The main objective was to address the relative importance of climate changes and tectonics to the resultant stratigraphic architecture. The results of computer simulations of sedimentary basin fills of rift basins were quite useful to test working hypothesis and mimic the process of filling a half graben during a rift event. The studied section includes a neovalanginian-eobarremian (Lower Cretaceous) rift interval from the Pendência Formation, located in the southwestern portion of Umbuzeiro Graben, in the offshore Potiguar Basin. The depositional setting is interpreted as progradational deltaic system entering a lake from its flexural margin. Sismoestratigraphyc and well logs analyses allowed to interpret two regressive intervals (Green and Yellow Sequences), separated by a broad transgressive interval (Orange Sequence), known as the Livramento Shale. The depositional history encompass three stages: two tectonically active phases, during the deposition of the Green and Yellow Sequences, and a tectonically quiescent phase, during the deposition of the Orange Sequence. Paleoclimatic interpretation, based on quantitative palynology and geochemical data (18O), suggests a tendency to arid conditions during the tectonically active phases and wet conditions during the tectonically quiescent phase. Stratigraphic modeling and backstripping techniques, supported by paleoclimatic/paleoecologic interpretations provide a powerful methodology to evaluate the tectonic and climatic controls on tectonic lakes
Resumo:
This dissertation seeks to reflect about the relations between danced movement and body space (Kinesphere), and their contributions to the expansion of the expressive possibilities of the subject on dancing. According to Rudolf Laban there is no space that is empty, because it is always being modified and signified at every moment by the movement. Space exists because we interact with it, at the same time movement occours configuring a signifcant space that is incessantly transformed. In this sense, space, body and movement appear in this research as interconnected and interdependent. For this discussion we have as main interlocutor the studies of Rudolf Laban. The nature of this research is qualitative and descriptive. This is a context that embraces the phenomenon of dance and as such it is based on a dimension that doesn't deal with mensurability, but with the art scene, fruitful in its infinite openness to the creation of multiple significances for what has been lived. We also propose to present a report about the practical study developed in the discipline Coreologia in the licentiate course of Dance in UFRN, as well as the analysis of the interviews applied to students of this curricular component. The questions were developed in a way that lead to a reflection about the experience of those interviewed in this discipline, thus generating material for us to discuss how the students perceive dance based on the relational study between space and movement. We realize that this study may favor an understanding of the relations that the experienced movement in the act of the dance weaves along the spatiality that receives and fills our bodies, resignifying the vision of a space which is restrict to the mere place were the body moves and occupies. It also favors the reflections concerning the body that moves and creates spatiality when dancing, thereby bringing to the Performing Arts a chance to think and to experience on the expansion of the expressive gesture in dance and beyond it, led by the recognition of the principles that organize human movement pointed by Laban. It also contributes on the formation of the students in licentiate courses of Dance by questioning the ways to appropriate the contents worked in a graduation discipline as regards to the availability of the body for dance. This dissertation is divided in three parts, called Impulsos. In the First Impulso: “Primeiros Gestos Textuais”, we find an introduction to concepts and ideas of body, movement and space that permeates all the work. In the Second Impulso: "Nós", the triad body-space-motion is discussed using the metaphorical image of a knot that binds these three concepts. The third and final Impulso: "Enlaces" deal with impressions and discoveries lived during the experimentation of the principles of inter-actions studied here, in the lessons of the already mentioned discipline
Resumo:
The drilling of wells for petroleum extraction generates rocks and soils fragments, among other residues. These fragments are denominated petroleum drilling gravel or simply petroleum drilling residue. On the sites of onshore exploration are formed big deposits of drilling gravel, an expensive final destination material. This work aims at evaluating the addition of drilling residue to a lateritic soil, as composite material, for construction of compacted fills for earth work projects. Soil and residue were evaluated by X-ray diffraction (XRD) and X-ray fluorescence (XRF) and by laboratory tests traditionally used in soil mechanics, as particle-size analysis of soils, determination of liquid and plasticity indexes and compaction test. After soil and residue characterization, soil-residue mixtures were studied, using dosages of 2,5%, 5%, 10%, and 15% of residue in relation to the dry soil mass. These mixtures were submitted to compaction test, CBR, direct shear test and consolidation test. The test results were compared to the current legislation of DNIT for compacted fill construction. The results showed that the mixtures presented the minimal necessary parameters, allowing, from the point of view of geotechnical analysis, the use of these mixtures for construction of compacted fills
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores
Resumo:
To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles