3 resultados para Expanded Bed Adsorption
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
Resumo:
Expanded Bed Adsorption plays an important role in the downstream processing mainly for reducing costs as well as steps besides could handling cells homogenates or fermentation broth. In this work Expanded Bed Adsorption was used to recover and purify whey proteins from coalho cheese manufacture using Streamline DEAE and Streamline SP both ionic resins as well as a hydrophobic resin Streamline Phenyl. A column of 2.6 cm inner diameter with 30 cm in height was coupled to a peristaltic pump. Hydrodynamics study was carried out with the three resins using Tris-HCl buffer in concentration of 30, 50 and 70 mM, with pH ranging from 7.0 to 8.0. In this case, assays of the expansion degree as well as Residence Time Distribution (RTD) were carried out. For the recovery and purification steps, a whey sample of 200 mL, was submitted to a column with 25mL of resin previously equilibrated with Tris/HCl (50 mM, pH 7.0) using a expanded bed. After washing, elution was carried out according the technique used. For ionic adsorption elution was carried out using 100 mL of Tris/HCl (50 mM, pH 7.0 in 1M NaCl). For Hydrophobyc interaction elution was carried out using Tris/HCl (50 mM, pH 7.0). Adsorption runs were carried out using the three resins as well as theirs combination. Results showed that for hydrodynamics studies a linear fit was observed for the three resins with a correlation coefficient (R2) about 0.9. In this case, Streamline Phenyl showed highest expansion degree reaching an expansion degree (H0/H) of 2.2. Bed porosity was of 0.7 when both resins Streamline DEAE and Streamline SP were used with StremLine Phenyl showing the highest bed porosity about 0.75. The number of theorical plates were 109, 41.5 and 17.8 and the axial dipersion coefficient (Daxial) were 0.5, 1.4 and 3.7 x 10-6 m2/s, for Streamline DEAE, Streamline SP and Streamline Phenyl, respectively. Whey proteins were adsorved fastly for the three resins with equilibrium reached in 10 minutes. Breakthrough curves showed that most of proteins stays in flowthrough as well as washing steps with 84, 77 and 96%, for Streamline DEAE, Streamline SP and Streamline Phenyl, respectively. It was observed protein peaks during elution for the three resins used. According to these peaks were identified 6 protein bands that could probably be albumin (69 KDa), lactoferrin (76 KDa), lactoperoxidase (89 KDa), β-lactoglobulin (18,3 KDa) e α-lactoalbumin (14 KDa), as well as the dimer of beta-lactoglobulin. The combined system compound for the elution of Streamline DEAE applied to the Streamline SP showed the best purification of whey proteins, mainly of the α-lactoalbumina
Resumo:
The growing interest and applications of biotechnology products have increased the development of new processes for recovery and purification of proteins. The expanded bed adsorption (EBA) has emerged as a promising technique for this purpose. It combines into one operation the steps of clarification, concentration and purification of the target molecule. Hence, the method reduces the time and the cost of operation. In this context, this thesis aim was to evaluate the recovery and purification of 503 antigen of Leishmania i. chagasi expressed in E. coli M15 and endotoxin removal by EBA. In the first step of this study, batch experiments were carried out using two experimental designs to define the optimal adsorption and elution conditions of 503 antigen onto Streamline chelating resin. For adsorption assays, using expanded bed, it was used a column of 2.6 cm in diameter by 30.0 cm in height coupled to a peristaltic pump. In the second step of study, the removal of endotoxin during antigen recovery process was evaluated employing the non-ionic surfactant Triton X-114 in the washing step ALE. In the third step, we sought developing a mathematical model able to predict the 503 antigen breakthrough curves in expanded mode. The experimental design results to adsorption showed the pH 8.0 and the NaCl concentration of 2.4 M as the optimum adsorption condition. In the second design, the only significant factor for elution was the concentration of imidazole, which was taken at 600 mM. The adsorption isotherm of the 503 antigen showed a good fit to the Langmuir model (R = 0.98) and values for qmax (maximum adsorption capacity) and Kd (equilibrium constant) estimated were 1.95 mg/g and 0.34 mg/mL, respectively. Purification tests directly from unclarified feedstock showed a recovery of 59.2% of the target protein and a purification factor of 6.0. The addition of the non-ionic surfactant Triton X-114 to the washing step of EBA led to high levels (> 99%) of LPS removal initially present in the samples for all conditions tested. The mathematical model obtained to describe the 503 antigen breakthrough curves in Streamline Chelanting resin in expanded mode showed a good fit for both parameter estimation and validation steps. The validated model was used to optimize the efficiencies, achieving maximum values of the process and of the column efficiencies of 89.2% and 75.9%, respectively. Therefore, EBA is an efficient alternative for the recovery of the target protein and removal of endotoxin from an E. coli unclarified feedstock in just one step.