4 resultados para Euclidean geometry
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)
Resumo:
In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
This dissertation is a research based on the Meaningful Learning Theory, with students from the second year of High School, in the city named Capinzal do Norte, state of Maranhão. The pedagogic approach of this research focuses on what to do and how to do so students can better grasp knowledge inherent to the Euclidean Special Geometry in a more meaningful and changing way, also that information may be kept longer in their brain, so it can last longer in the present and future. The methodological strategy adopted was the research-action, followed by the constant observance of a researcher on the matter with the purpose to ensure consistent results, which come from the use of a variety of data collector instruments, such as: Concept Maps, manipulatives, educational softwares and application of evaluative tests, besides the observations made throughout the process of investigation and the diagnosis itself. It is all due to the fact that we rely on the premise that knowledge is assimilated in particular and idiosyncratic ways, which means each and every student learns in different ways and in different periods of time. That is why it is so important to develop diversified methodologies to the same subject. This research adds to the other ones related to the theoretical frameworks of the Meaningful Learning Theory, of Concept Maps, of the use of technology on the educational process and of manipulatives, which purpose is to connect their common dots. This pedagogical intervention also focuses on the construction of the educational orientations with applicability directly on class, directed specially by the Mathematics teacher of the basic education, who might use them during your teaching practice. Such guidelines established here as an educational product aim to follow the Theory's assumptions that serves as basis to this research, thus becoming an educational element with a relevant significance. The results, with which we are faced, proved overwhelming to the proposed objectives in terms of learning, which were evident in the construction of Conceptual Maps, as well as in the use of Concrete Materials, in addition to serving as a motivational element to participating students of research. The results obtained are indeed reliable in terms of learning, considered the expected goals, and made us certain that the way we have approached the subject is consistent with a holistic education and that at the same time values the tiniest details, which are fundamental to all the learning-teaching process.