10 resultados para Estéreo-Fotogrametria
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work we propose a technique that uses uncontrolled small format aerial images, or SFAI, and stereohotogrammetry techniques to construct georeferenced mosaics. Images are obtained using a simple digital camera coupled with a radio controlled (RC) helicopter. Techniques for removing common distortions are applied and the relative orientation of the models are recovered using projective geometry. Ground truth points are used to get absolute orientation, plus a definition of scale and a coordinate system which relates image measures to the ground. The mosaic is read into a GIS system, providing useful information to different types of users, such as researchers, governmental agencies, employees, fishermen and tourism enterprises. Results are reported, illustrating the applicability of the system. The main contribution is the generation of georeferenced mosaics using SFAIs, which have not yet broadly explored in cartography projects. The proposed architecture presents a viable and much less expensive solution, when compared to systems using controlled pictures
Resumo:
This work proposes a method to determine the depth of objects in a scene using a combination between stereo vision and self-calibration techniques. Determining the rel- ative distance between visualized objects and a robot, with a stereo head, it is possible to navigate in unknown environments. Stereo vision techniques supply a depth measure by the combination of two or more images from the same scene. To achieve a depth estimates of the in scene objects a reconstruction of this scene geometry is necessary. For such reconstruction the relationship between the three-dimensional world coordi- nates and the two-dimensional images coordinates is necessary. Through the achievement of the cameras intrinsic parameters it is possible to make this coordinates systems relationship. These parameters can be gotten through geometric camera calibration, which, generally is made by a correlation between image characteristics of a calibration pattern with know dimensions. The cameras self-calibration allows the achievement of their intrinsic parameters without using a known calibration pattern, being possible their calculation and alteration during the displacement of the robot in an unknown environment. In this work a self-calibration method based in the three-dimensional polar coordinates to represent image features is presented. This representation is determined by the relationship between images features and horizontal and vertical opening cameras angles. Using the polar coordinates it is possible to geometrically reconstruct the scene. Through the proposed techniques combination it is possible to calculate a scene objects depth estimate, allowing the robot navigation in an unknown environment
Resumo:
We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time
Resumo:
This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms
Resumo:
O Laboratório de Sistemas Inteligentes do Departamento de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte - UFRN -tem como um de seus projetos de pesquisa -Robosense -a construção de uma plataforma robótica móvel. Trata-se de um robô provido de duas rodas, acionadas de forma diferencial, dois braços, com 5 graus de liberdade cada, um cinturão de sonares e uma cabeça estéreo. Como objetivo principal do projeto Robosense, o robô deverá ser capaz de navegar por todo o prédio do LECA, desviando de obstáculos. O sistema de navegação do robô, responsável pela geração e seguimento de rotas, atuará em malha fechada. Ou seja, sensores serão utilizados pelo sistema com o intuito de informar ao robô a sua pose atual, incluindo localização e a configuração de seus recursos. Encoders (sensores especiais de rotação) foram instalados nas rodas, bem como em todos os motores dos dois braços da cabeça estéreo. Sensores de fim-de-curso foram instalados em todas as juntas da cabeça estéreo para que seja possível sua pré-calibração. Sonares e câmeras também farão parte do grupo de sensores utilizados no projeto. O robô contará com uma plataforma composta por, a princípio, dois computadores ligados a um barramento único para uma operação em tempo real, em paralelo. Um deles será responsável pela parte de controle dos braços e de sua navegação, tomando como base as informações recebidas dos sensores das rodas e dos próximos objetivos do robô. O outro computador processará todas as informações referentes à cabeça estéreo do robô, como as imagens recebidas das câmeras. A utilização de técnicas de imageamento estéreo torna-se necessária, pois a informação de uma única imagem não determina unicamente a posição de um dado ponto correspondente no mundo. Podemos então, através da utilização de duas ou mais câmeras, recuperar a informação de profundidade da cena. A cabeça estéreo proposta nada mais é que um artefato físico que deve dar suporte a duas câmeras de vídeo, movimentá-las seguindo requisições de programas (softwares) apropriados e ser capaz de fornecer sua pose atual. Fatores como velocidade angular de movimentação das câmeras, precisão espacial e acurácia são determinantes para o eficiente resultado dos algoritmos que nesses valores se baseiam
Resumo:
In the recovering process of oil, rock heterogeneity has a huge impact on how fluids move in the field, defining how much oil can be recovered. In order to study this variability, percolation theory, which describes phenomena involving geometry and connectivity are the bases, is a very useful model. Result of percolation is tridimensional data and have no physical meaning until visualized in form of images or animations. Although a lot of powerful and sophisticated visualization tools have been developed, they focus on generation of planar 2D images. In order to interpret data as they would be in the real world, virtual reality techniques using stereo images could be used. In this work we propose an interactive and helpful tool, named ZSweepVR, based on virtual reality techniques that allows a better comprehension of volumetric data generated by simulation of dynamic percolation. The developed system has the ability to render images using two different techniques: surface rendering and volume rendering. Surface rendering is accomplished by OpenGL directives and volume rendering is accomplished by the Zsweep direct volume rendering engine. In the case of volumetric rendering, we implemented an algorithm to generate stereo images. We also propose enhancements in the original percolation algorithm in order to get a better performance. We applied our developed tools to a mature field database, obtaining satisfactory results. The use of stereoscopic and volumetric images brought valuable contributions for the interpretation and clustering formation analysis in percolation, what certainly could lead to better decisions about the exploration and recovery process in oil fields
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
This work introduces a new method for environment mapping with three-dimensional information from visual information for robotic accurate navigation. Many approaches of 3D mapping using occupancy grid typically requires high computacional effort to both build and store the map. We introduce an 2.5-D occupancy-elevation grid mapping, which is a discrete mapping approach, where each cell stores the occupancy probability, the height of the terrain at current place in the environment and the variance of this height. This 2.5-dimensional representation allows that a mobile robot to know whether a place in the environment is occupied by an obstacle and the height of this obstacle, thus, it can decide if is possible to traverse the obstacle. Sensorial informations necessary to construct the map is provided by a stereo vision system, which has been modeled with a robust probabilistic approach, considering the noise present in the stereo processing. The resulting maps favors the execution of tasks like decision making in the autonomous navigation, exploration, localization and path planning. Experiments carried out with a real mobile robots demonstrates that this proposed approach yields useful maps for robot autonomous navigation
Resumo:
We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results
Resumo:
This work presents an analysis of the behavior of some algorithms usually available in stereo correspondence literature, with full HD images (1920x1080 pixels) to establish, within the precision dilemma versus runtime applications which these methods can be better used. The images are obtained by a system composed of a stereo camera coupled to a computer via a capture board. The OpenCV library is used for computer vision operations and processing images involved. The algorithms discussed are an overall method of search for matching blocks with the Sum of the Absolute Value of the difference (Sum of Absolute Differences - SAD), a global technique based on cutting energy graph cuts, and a so-called matching technique semi -global. The criteria for analysis are processing time, the consumption of heap memory and the mean absolute error of disparity maps generated.