5 resultados para Equações de difusão linear

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate several diffusion equations which extend the usual one by considering the presence of nonlinear terms or a memory effect on the diffusive term. We also considered a spatial time dependent diffusion coefficient. For these equations we have obtained a new classes of solutions and studied the connection of them with the anomalous diffusion process. We start by considering a nonlinear diffusion equation with a spatial time dependent diffusion coefficient. The solutions obtained for this case generalize the usual one and can be expressed in terms of the q-exponential and q-logarithm functions present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear external force is considered. For this case the solutions can be also expressed in terms of the q-exponential and q-logarithm functions. However, by a suitable choice of the nonlinear external force, we may have an exponential behavior, suggesting a connection with standard thermostatistics. This fact reveals that these solutions may present an anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann- Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a kernel leading to the anomalous diffusive process. Particularly, our first choice leads to both a the usual behavior and anomalous behavior obtained through a fractionalderivative equation. The results obtained, within this context, correspond to a change in the waiting-time distribution for jumps in the formalism of random walks. These modifications had direct influence in the solutions, that turned out to be expressed in terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment associated to these distributions led to an anomalous spread of the distribution, in contrast to the usual situation where one finds a linear increase with time

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strength of respiratory muscle are frequently assessed by maximal inspiratory and expiratory pressure, however, the maneuvers to assess PImax and PEmax are difficult for many patients. The sniff nasal inspiratory pressure (SNIP) is a simple and noninvasive technique use to assess inspiratory muscles strength. Reference values have been previous established for SNIP in adults but no previous studies have provided reference values for SNIP in adult Brazilian population. The main objective of this study were propose reference values of SNIP for Brazilian population through establishment of relationship between anthropometric measurements, physical activity profile and SNIP and at the same time compare the values obtained with reference values previously published. We studied 117 subjects (59 male and 58 female) distributed in different age grouped 20-80 years old. The results showed on significant positive relationship between SNIP and height and negative correlation with age (p<0.05). In the multiple linear regression analysis only age continued to have an independent predictive role for the two dependent variables that correlated with SNIP. The values of SNIP found in Brazilian population were higher when compared with predict values of previous studies. The results of this study provide reference equations of SNIP for health Brazilian population from 20 to 80 years old

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I ntroduction: The assessment of respiratory muscle strength is important in the diagnosis and monitoring of the respiratory muscles weakness of respiratory and neuromuscular diseases. However, there are still no studies that provide predictive equations and reference values for maximal respiratory pressures for children in our population. Aim: The purpose of this study was to propose predictive equations for maximal respiratory pressures in healthy school children. Method: This is an observational cross-sectional study. 144 healthy children were assessed. They were students from public and private schools in the city of Natal /RN (63 boys and 81 girls), subdivided in age groups of 7-8 and 9-11 years. The students presented the BMI, for age and sex, between 5 and 85 percentile. Maximal respiratory pressures were measured with the digital manometer MVD300 (Globalmed ®). The maximal inspiratory pressure (MIP) and maximal expiratory pressures (MEP) were measured from residual volume and total lung capacity, respectively. The data were analyzed using the SPSS Statistics 15.0 software (Statistical Package for Social Science) by assigning the significance level of 5%. Descriptive analysis was expressed as mean and standard deviation. T'Student test was used for unpaired comparison of averages of the variables. The comparison of measurements obtained with the predicted values in previous studies was performed using the paired t'Student test. The Pearson correlation test was used to verify the correlation of MRP's with the independent variables (age, sex, weight and height). For the equations analysis the stepwise linear regression was used. Results: By analyzing the data, we observed that in the age range studied MIP was significantly higher in boys. The MEP did not differ between boys and girls aged 7 to 8 years, the reverse occurred in the age between 9 and 11 years. The boys had a significant increase in respiratory muscle strength with advancing age. Regardless sex and age, MEP was always higher than the MIP. The reference values found in this study are similar to a sample of Spanish and Canadian children. The two models proposed in previous studies with children from other countries were not able to consistently predict the values observed in this studied population. The variables sex, age and weight correlated with MIP, whereas the MEP was also correlated with height. However, in the regression models proposed in this study, only gender and age were kept exerting influence on the variability of maximal inspiratory and expiratory pressures. Conclusion: This study provides reference values, lower limits of normality and proposes two models that allow predicting, through the independent variables, sex and age, the value of maximal static respiratory pressures in healthy children aged between 7 and 11 years old

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.