5 resultados para Emission Spectra
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Discs were grade II cp Ti oxynitride by plasma of Ar - N2 - O2 using different proportions of individual gases. These ratios were established from analysis of optical emission spectroscopy (OES) of plasma species. The proportions that resulted in species whose spectra showed an abrupt change of light intensity were chosen for this study. Nanohardness tests revealed that there was a correlation between the intensity of N2 + species with the hardness, because the treatments where they had a higher intensity, obtained a higher value nanohardness, although the crystalline phases have remained unchanged. With respect to topography, it was observed that in general, the surface roughness is related to the intensities of plasma species, because they may have different values depending on the behavior of the species. Images obtained by optical microscopy revealed a surface with grains of different colors to optical reflectance showed a peak of reflection in the red area. Measures the contact angle and surface tension showed hydrophilic properties and hydrophilic with little variation of polar and dispersive components of surface tension
Resumo:
Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence
Resumo:
In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
This is a work involving fundamental studies of chemistry where the synthesis and structural characterization, as well as a possible future application of these new compounds as luminescent sensors or sunscreen agents, complexes with 4,4 diaminostilbene-2,2-disulfonic (DSD) and trivalent lanthanide ions La3+, Nd3+, Eu3+, Gd3+ and Yb3+, were synthesized in the ratio of 3 mmol: 1 mmol (DSD: lanthanides). The complexes obtained with these ions were present in powder form and were characterized by complexometric titration with EDTA CHN Elemental analysis, molecular absorption spectroscopy in the ultraviolet region, the absorption spectroscopy in the infrared, thermal analysis (TG / DTG), Nuclear Magnetic Resonance - NMR 1H and Luminescence Spectroscopy. The complexometric titration and CHN analysis, confirmed the TG / DTG which suggest that these complexes have the following general chemical formulas: [La2(C14H12S2O6N2)2(H2O)2Cl2].7H2O,[Nd2(C14H12S2O6N2)2(H2O)2Cl2].6H2O,[Eu2(C14 H12S2O6N2)2(H2O)2Cl2].7H2O,[Gd2(C14H12S2O6N2)2(H2O)2Cl2].4H2O e [Yb2(C14H12S2O6N2)2(H2O)2].6H2O. The disappearance of the bands in the infrared spectrum at 2921 cm-1 and 2623 cm-1 and the displacement of the bands in the spectra of the amine complex indicate that the lanthanide ion is coordinated to the oxygen atoms and the sulfonate groups of the nitrogens amines, suggesting the formation of the dimer. The disappearance of the signal and the displacement signal SO3H amines in the 1H NMR spectrum of this complex are also indicative coordination and dimer formation. The Thermogravimetry indicates that the DSD is thermally stable in the range of 40º to 385°C and their complexes with lanthanide ions exhibit weight loss between 4 and 5 stages. The Uv-visible spectra indicated that the DSD and complexes exhibit cis isomers. The analysis of luminescence indicates that the complexes do not exhibit emission in the region of the lanthanides but an intense emission part of the binder. This is related to the triplet states of the ligand, which are in the lowest energy state emitting lanthanide ions, and also the formation of the dimer that suppress the luminescence of ion Eu3+. The formation of dimer was also confirmed by calculating the europium complex structure using the model Hamiltonian PM6 and Sparkle