4 resultados para EX-VIVO
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Visceral leishmaniasis (VL) in Brazil is a disease caused by Leishmania infantum chagasi (L.i.chagasi). The clinical evolution post-infection depends on the vertebrate host immune response, which is genetically mediated. This study aimed to evaluate the immune response of individuals living in endemic area for VL in the state of the Rio Grande do Norte, considering individuals with VL under treatment (n = 9), recovered VL <1 year post treatment (n = 10), > 10 years posttreatment (n = 9), uninfected individuals living in endemic areas (n = 7), individuals that lost DTH response (n=6) and asymptomatic individuals for VL (n=9). Peripheral blood cells were evaluated in the presence and absence of soluble Leishmania antigens (SLA) and ex vivo, to determine activation, presence of regulatory cells and memory cells. The Leishmania parasitemia and anti-Leishmania antibodies were determined respectively by qPCR and ELISA. Cells from individuals with VL under treatment showed less cell activation after stimulation with SLA for the markers CD4/CD69, CD8/CD69 and CD8/CD25 compared with VL post treatment treatment (p <0.001). Apparently uninfected individuals have a higher cell activation than symptomatic VL (p <0.001), with the exception of CD8/CD25 marker (p = 0.6662). On the other hand, in the ex-vivo group, significant differences were observed for CD4/CD69, CD8/CD69 and CD8/CD25 between the 4 groups due to increased cell activation present in cells of individuals symptomatic LV (p <0.001). VL cells under treatment, ex vivo, have a lower percentage of memory cells (CD4/CD45RO and CD8/CD45RO) than individuals VL post-treatment or control group (p = <0.01). Likewise, individuals with symptomatic VL have fewer regulatory cells when stimulated by SLA [CD4/CD25 (p = 0.0022) and CD4/FOXP3 (p = 0.0016)] and in the ex-vivo group (p = 0.0017). Finally, DNA isolated from recovered VL contained Leishmania DNA, supporting the hypothesis of non-sterile clinical cure for Leishmania infection. Recovered VL, even 10 years after treatment have high levels of memory cells, which may be due to the presence of stimulation, either by reexposure to Leishmania or non-sterile cure
Resumo:
Visceral Leishmaniasis (VL) is endemic in Brazil and the northeast region had the highest incidence of the disease , despite, in the last 30 years, it has spread to all geographic regions of the country. Leishmania infantum is the m ain etiological agent of VL in Latin America, Europe and North Africa. However, not all infected individuals develop the disease; in fact, the majority present spontaneous re solution of infection without symptoms. The evaluation of the immunological profil e has been mostly conducted stimulating, with Leishmania spp. antigen, peripheral blood mononuclear cells isolated from subjects with VL. These studies showed that VL patients had an inhibition of both, lymphocyte proliferation and proinflammatory response to Leishmania spp. antigen. Our study aimed to evaluate the immune response in active LV, cured post treatment and asymptomatic infection. To reach this aim, we analyzed immunophenotypic features related to activation, Treg and memory lymphocytes, by flow cytometry, as well as, evaluation of cytokine production, in ex vivo or in whole blood culture. In active VL volunteers, a longitu dinal study was conducted with reassessment at 4 and 14 months after clinical cure. The control group included individuals th at live d in endemic region and were either Positive Control, consisting of individuals with positive anti - L eishmania spp. serology and/or positive PCR for Leishmania spp. and Negative Control composed by individuals with negative anti - Leishmania antibodie s serology and negative PCR for Leishmania . During VL, CD4 lymphocytes showed greater activation and memory profile s and were the major source of cytokines in culture when compared to CD8 lymphocytes , and these were not Leishmania specific. There were act ivated lymphocytes during VL (CD4 + CD69 + :4.9%) when compared to control groups, Positive (CD4 + CD69 + :1.96%, p=0.0045) and Negative (CD4 + CD69 + :1.35%, p=0.006), on the other hand, this was non - specific activation. The lymphocyte activation profile remain ed el evated even 14 months post treatmen t. A fter clinical cure , the activation was Leishmania specific (CD4 + CD25 + absence of SLA: 8.4%, and presence of SLA: 10.7% p=0.0279). CD8 + CD25 + lymphocytes were able to produce Leishmania specific IFN - γ in both, Positive Controls (absence of SLA 5.2% and presence of SLA: 9.5%, p=0.0391) and Cured 4 month (absence of SLA: 3.9%; presence of SLA: 10.7% p=0.0098). Whole blood culture cells, of VL patients, were able to produce IFN - γ, by SLA stimulation (absence of SLA: 28.0 pg ∕mL, and presence: 44.3 pg∕mL p=0.0020) as well as recovered groups (absence of SLA 2.3 pg∕mL and presence of SLA 139.8 pg∕mL, p=0.0005). However, the high level of IL - 10 seem ed to inhibit pro - inflammatory activity of IFN - γ and TNF - α during symptomatic dis ease . Unlike other pro - inflammatory cytokines, active VL group d id not produce Leishmania specific IL - 2 (absence of SLA 2.4 pg∕mL and presence of SLA: 2.6 pg∕mL). Based on these data we conclude that the restoration of lymphocyte activation and decreased i n IL - 10 Leishmania specific production were related to a protective immune profile.
Resumo:
Visceral leishmaniasis (VL) is endemic in many countries, including Brazil. The protozoan Leishmania infantum, is the etiological agent of VL, and is transmitted by the bite of female sandflies during the blood meal. The majority of subjects when exposed to the parasite do not develop the disease, because of development of Th1 cellular responses. Those who have develop signs of VL such as fever, weight loss, hepatosplenomegaly, have impairment of the cellular immune response, specific to the Leishmania antigens. We evaluated whether the specififc anergy during symptomatic VL, may be associated with changes in T cells costimulatory molecules or their ligands in CD14+ monocytes. There is an increase in CTLA-4 porcentage on CD4+ T lymphocytes (p=0.001) and ICOS on CD4+ and CD8+ T cells (p=0.002 to CD4+ and p=0.003 to CD8+), after stimulation by soluble Leishmania antigen (SLA) during active visceral leishmaniasis, and that there is a higher percentage of these molecules ex vivo, when comparing symptomatic to recovered individuals (p=0.04 to CTLA-4 in CD4+, and p=0.001 to ICOS in CD4+ and p=0.026 to CD8+). Moreover, we found a high gene expression of CTLA-4, OX-40 and ICOS during active VL. CD40, CD80, CD86, HLA-DR and ICOSL molecules do not suffer changes during disease. There is IFN-γ production by the peripheral blood cells, after SLA stimulation, by peripheral blood cells in symptomatic subjects; however, there is a decrease of the ratio IFN-γ/IL-10, which is reversed after clinical recovery. The impairment of some costimulatory molecules pathways during symptomatic VL could inhibit the ability of phagocytes to kill Leishmania and could facilitate their survival and the proliferation inside macrophages.
Resumo:
Visceral leishmaniasis (VL) in Brazil is a disease caused by Leishmania infantum chagasi (L.i.chagasi). The clinical evolution post-infection depends on the vertebrate host immune response, which is genetically mediated. This study aimed to evaluate the immune response of individuals living in endemic area for VL in the state of the Rio Grande do Norte, considering individuals with VL under treatment (n = 9), recovered VL <1 year post treatment (n = 10), > 10 years posttreatment (n = 9), uninfected individuals living in endemic areas (n = 7), individuals that lost DTH response (n=6) and asymptomatic individuals for VL (n=9). Peripheral blood cells were evaluated in the presence and absence of soluble Leishmania antigens (SLA) and ex vivo, to determine activation, presence of regulatory cells and memory cells. The Leishmania parasitemia and anti-Leishmania antibodies were determined respectively by qPCR and ELISA. Cells from individuals with VL under treatment showed less cell activation after stimulation with SLA for the markers CD4/CD69, CD8/CD69 and CD8/CD25 compared with VL post treatment treatment (p <0.001). Apparently uninfected individuals have a higher cell activation than symptomatic VL (p <0.001), with the exception of CD8/CD25 marker (p = 0.6662). On the other hand, in the ex-vivo group, significant differences were observed for CD4/CD69, CD8/CD69 and CD8/CD25 between the 4 groups due to increased cell activation present in cells of individuals symptomatic LV (p <0.001). VL cells under treatment, ex vivo, have a lower percentage of memory cells (CD4/CD45RO and CD8/CD45RO) than individuals VL post-treatment or control group (p = <0.01). Likewise, individuals with symptomatic VL have fewer regulatory cells when stimulated by SLA [CD4/CD25 (p = 0.0022) and CD4/FOXP3 (p = 0.0016)] and in the ex-vivo group (p = 0.0017). Finally, DNA isolated from recovered VL contained Leishmania DNA, supporting the hypothesis of non-sterile clinical cure for Leishmania infection. Recovered VL, even 10 years after treatment have high levels of memory cells, which may be due to the presence of stimulation, either by reexposure to Leishmania or non-sterile cure