5 resultados para Dynamical Monte Carlo

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Monte Carlo method is accurate and is relatively simple to implement for the solution of problems involving complex geometries and anisotropic scattering of radiation as compared with other numerical techniques. In addition, differently of what happens for most of numerical techniques, for which the associated simulations computational time tends to increase exponentially with the complexity of the problems, in the Monte Carlo the increase of the computational time tends to be linear. Nevertheless, the Monte Carlo solution is highly computer time consuming for most of the interest problems. The Multispectral Energy Bundle model allows the reduction of the computational time associated to the Monte Carlo solution. The referred model is here analyzed for applications in media constituted for nonparticipating species and water vapor, which is an important emitting species formed during the combustion of hydrocarbon fuels. Aspects related to computer time optimization are investigated the model solutions are compared with benchmark line-by-line solutions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The new technique for automatic search of the order parameters and critical properties is applied to several well-know physical systems, testing the efficiency of such a procedure, in order to apply it for complex systems in general. The automatic-search method is combined with Monte Carlo simulations, which makes use of a given dynamical rule for the time evolution of the system. In the problems inves¬tigated, the Metropolis and Glauber dynamics produced essentially equivalent results. We present a brief introduction to critical phenomena and phase transitions. We describe the automatic-search method and discuss some previous works, where the method has been applied successfully. We apply the method for the ferromagnetic fsing model, computing the critical fron¬tiers and the magnetization exponent (3 for several geometric lattices. We also apply the method for the site-diluted ferromagnetic Ising model on a square lattice, computing its critical frontier, as well as the magnetization exponent f3 and the susceptibility exponent 7. We verify that the universality class of the system remains unchanged when the site dilution is introduced. We study the problem of long-range bond percolation in a diluted linear chain and discuss the non-extensivity questions inherent to long-range-interaction systems. Finally we present our conclusions and possible extensions of this work

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, we address two issues of broad conceptual and practical relevance in the study of complex networks. The first is associated with the topological characterization of networks while the second relates to dynamical processes that occur on top of them. Regarding the first line of study, we initially designed a model for networks growth where preferential attachment includes: (i) connectivity and (ii) homophily (links between sites with similar characteristics are more likely). From this, we observe that the competition between these two aspects leads to a heterogeneous pattern of connections with the topological properties of the network showing quite interesting results. In particular, we emphasize that there is a region where the characteristics of sites play an important role not only for the rate at which they get links, but also for the number of connections which occur between sites with similar and dissimilar characteristics. Finally, we investigate the spread of epidemics on the network topology developed, whereas its dissemination follows the rules of the contact process. Using Monte Carlo simulations, we show that the competition between states (infected/healthy) sites, induces a transition between an active phase (presence of sick) and an inactive (no sick). In this context, we estimate the critical point of the transition phase through the cumulant Binder and ratio between moments of the order parameter. Then, using finite size scaling analysis, we determine the critical exponents associated with this transition